235 research outputs found

    Attention Gated Networks: Learning to Leverage Salient Regions in Medical Images

    Get PDF
    We propose a novel attention gate (AG) model for medical image analysis that automatically learns to focus on target structures of varying shapes and sizes. Models trained with AGs implicitly learn to suppress irrelevant regions in an input image while highlighting salient features useful for a specific task. This enables us to eliminate the necessity of using explicit external tissue/organ localisation modules when using convolutional neural networks (CNNs). AGs can be easily integrated into standard CNN models such as VGG or U-Net architectures with minimal computational overhead while increasing the model sensitivity and prediction accuracy. The proposed AG models are evaluated on a variety of tasks, including medical image classification and segmentation. For classification, we demonstrate the use case of AGs in scan plane detection for fetal ultrasound screening. We show that the proposed attention mechanism can provide efficient object localisation while improving the overall prediction performance by reducing false positives. For segmentation, the proposed architecture is evaluated on two large 3D CT abdominal datasets with manual annotations for multiple organs. Experimental results show that AG models consistently improve the prediction performance of the base architectures across different datasets and training sizes while preserving computational efficiency. Moreover, AGs guide the model activations to be focused around salient regions, which provides better insights into how model predictions are made. The source code for the proposed AG models is publicly available.Comment: Accepted for Medical Image Analysis (Special Issue on Medical Imaging with Deep Learning). arXiv admin note: substantial text overlap with arXiv:1804.03999, arXiv:1804.0533

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    Applying machine learning methods to enable automatic customisation of knee replacement implants from CT data

    Get PDF
    The aim of this study was to develop an automated pipeline capable of designing custom total knee replacement implants from CT scans. The developed pipeline firstly utilised a series of machine learning methods including classification, object detection, and image segmentation models, to extract geometrical information from inputted DICOM files. Statistical shape models then used the information to create femur and tibia 3D surface model predictions which were ultimately used by computer aided design scripts to generate customised implant designs. The developed pipeline was trained and tested using CT scan images, along with segmented 3D models, obtained for 98 Korean Asian subjects. The performance of the pipeline was tested computationally by virtually fitting outputted implant designs with ‘ground truth’ 3D models for each test subject’s bones. This demonstrated the pipeline was capable of repeatably producing highly accurate designs, and its performance was not impacted by subject sex, height, age, or knee side. In conclusion, a robust, accurate and automatic, CT-based total knee replacement customisation pipeline was shown to be feasible and could afford significant time and cost advantages over conventional methods. The pipeline framework could also be adapted to enable customisation of other medical implants

    DEEP LEARNING IN COMPUTER-ASSISTED MAXILLOFACIAL SURGERY

    Get PDF

    Machine Learning in Medical Image Analysis

    Get PDF
    Machine learning is playing a pivotal role in medical image analysis. Many algorithms based on machine learning have been applied in medical imaging to solve classification, detection, and segmentation problems. Particularly, with the wide application of deep learning approaches, the performance of medical image analysis has been significantly improved. In this thesis, we investigate machine learning methods for two key challenges in medical image analysis: The first one is segmentation of medical images. The second one is learning with weak supervision in the context of medical imaging. The first main contribution of the thesis is a series of novel approaches for image segmentation. First, we propose a framework based on multi-scale image patches and random forests to segment small vessel disease (SVD) lesions on computed tomography (CT) images. This framework is validated in terms of spatial similarity, estimated lesion volumes, visual score ratings and was compared with human experts. The results showed that the proposed framework performs as well as human experts. Second, we propose a generic convolutional neural network (CNN) architecture called the DRINet for medical image segmentation. The DRINet approach is robust in three different types of segmentation tasks, which are multi-class cerebrospinal fluid (CSF) segmentation on brain CT images, multi-organ segmentation on abdomen CT images, and multi-class tumour segmentation on brain magnetic resonance (MR) images. Finally, we propose a CNN-based framework to segment acute ischemic lesions on diffusion weighted (DW)-MR images, where the lesions are highly variable in terms of position, shape, and size. Promising results were achieved on a large clinical dataset. The second main contribution of the thesis is two novel strategies for learning with weak supervision. First, we propose a novel strategy called context restoration to make use of the images without annotations. The context restoration strategy is a proxy learning process based on the CNN, which extracts semantic features from images without using annotations. It was validated on classification, localization, and segmentation problems and was superior to existing strategies. Second, we propose a patch-based framework using multi-instance learning to distinguish normal and abnormal SVD on CT images, where there are only coarse-grained labels available. Our framework was observed to work better than classic methods and clinical practice.Open Acces

    Image-based biomechanical models of the musculoskeletal system

    Get PDF
    Finite element modeling is a precious tool for the investigation of the biomechanics of the musculoskeletal system. A key element for the development of anatomically accurate, state-of-the art finite element models is medical imaging. Indeed, the workflow for the generation of a finite element model includes steps which require the availability of medical images of the subject of interest: segmentation, which is the assignment of each voxel of the images to a specific material such as bone and cartilage, allowing for a three-dimensional reconstruction of the anatomy; meshing, which is the creation of the computational mesh necessary for the approximation of the equations describing the physics of the problem; assignment of the material properties to the various parts of the model, which can be estimated for example from quantitative computed tomography for the bone tissue and with other techniques (elastography, T1rho, and T2 mapping from magnetic resonance imaging) for soft tissues. This paper presents a brief overview of the techniques used for image segmentation, meshing, and assessing the mechanical properties of biological tissues, with focus on finite element models of the musculoskeletal system. Both consolidated methods and recent advances such as those based on artificial intelligence are described

    Generating semantically enriched diagnostics for radiological images using machine learning

    Get PDF
    Development of Computer Aided Diagnostic (CAD) tools to aid radiologists in pathology detection and decision making relies considerably on manually annotated images. With the advancement of deep learning techniques for CAD development, these expert annotations no longer need to be hand-crafted, however, deep learning algorithms require large amounts of data in order to generalise well. One way in which to access large volumes of expert-annotated data is through radiological exams consisting of images and reports. Using past radiological exams obtained from hospital archiving systems has many advantages: they are expert annotations available in large quantities, covering a population-representative variety of pathologies, and they provide additional context to pathology diagnoses, such as anatomical location and severity. Learning to auto-generate such reports from images presents many challenges such as the difficulty in representing and generating long, unstructured textual information, accounting for spelling errors and repetition or redundancy, and the inconsistency across different annotators. In this thesis, the problem of learning to automate disease detection from radiological exams is approached from three directions. Firstly, a report generation model is developed such that it is conditioned on radiological image features. Secondly, a number of approaches are explored aimed at extracting diagnostic information from free-text reports. Finally, an alternative approach to image latent space learning from current state-of-the-art is developed that can be applied to accelerated image acquisition.Open Acces

    Image Quality Assessment for Population Cardiac MRI: From Detection to Synthesis

    Get PDF
    Cardiac magnetic resonance (CMR) images play a growing role in diagnostic imaging of cardiovascular diseases. Left Ventricular (LV) cardiac anatomy and function are widely used for diagnosis and monitoring disease progression in cardiology and to assess the patient's response to cardiac surgery and interventional procedures. For population imaging studies, CMR is arguably the most comprehensive imaging modality for non-invasive and non-ionising imaging of the heart and great vessels and, hence, most suited for population imaging cohorts. Due to insufficient radiographer's experience in planning a scan, natural cardiac muscle contraction, breathing motion, and imperfect triggering, CMR can display incomplete LV coverage, which hampers quantitative LV characterization and diagnostic accuracy. To tackle this limitation and enhance the accuracy and robustness of the automated cardiac volume and functional assessment, this thesis focuses on the development and application of state-of-the-art deep learning (DL) techniques in cardiac imaging. Specifically, we propose new image feature representation types that are learnt with DL models and aimed at highlighting the CMR image quality cross-dataset. These representations are also intended to estimate the CMR image quality for better interpretation and analysis. Moreover, we investigate how quantitative analysis can benefit when these learnt image representations are used in image synthesis. Specifically, a 3D fisher discriminative representation is introduced to identify CMR image quality in the UK Biobank cardiac data. Additionally, a novel adversarial learning (AL) framework is introduced for the cross-dataset CMR image quality assessment and we show that the common representations learnt by AL can be useful and informative for cross-dataset CMR image analysis. Moreover, we utilize the dataset invariance (DI) representations for CMR volumes interpolation by introducing a novel generative adversarial nets (GANs) based image synthesis framework, which enhance the CMR image quality cross-dataset
    • …
    corecore