32,819 research outputs found

    Improvements on automatic speech segmentation at the phonetic level

    Full text link
    In this paper, we present some recent improvements in our automatic speech segmentation system, which only needs the speech signal and the phonetic sequence of each sentence of a corpus to be trained. It estimates a GMM by using all the sentences of the training subcorpus, where each Gaussian distribution represents an acoustic class, which probability densities are combined with a set of conditional probabilities in order to estimate the probability densities of the states of each phonetic unit. The initial values of the conditional probabilities are obtained by using a segmentation of each sentence assigning the same number of frames to each phonetic unit. A DTW algorithm fixes the phonetic boundaries using the known phonetic sequence. This DTW is a step inside an iterative process which aims to segment the corpus and re-estimate the conditional probabilities. The results presented here demonstrate that the system has a good capacity to learn how to identify the phonetic boundaries. © 2011 Springer-Verlag.This work was supported by the Spanish MICINN under contract TIN2008-06856-C05-02Gómez Adrian, JA.; Calvo Lance, M. (2011). Improvements on automatic speech segmentation at the phonetic level. En Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. Springer Verlag (Germany). 7042:557-564. https://doi.org/10.1007/978-3-642-25085-9_66S5575647042Toledano, D.T., Hernández Gómez, L., Villarrubia Grande, L.: Automatic Phonetic Segmentation. IEEE Transactions on Speech and Audio Processing 11(6), 617–625 (2003)Kipp, A., Wesenick, M.B., Schiel, F.: Pronunciation modelling applied to automatic segmentation of spontaneous speech. In: Proceedings of Eurospeech, Rhodes, Greece, pp. 2013–2026 (1997)Sethy, A., Narayanan, S.: Refined Speech Segmentation for Concatenative Speech Synthesis. In: Proceedings of ICSLP, Denver, Colorado, USA, pp. 149–152 (2002)Jarify, S., Pastor, D., Rosec, O.: Cooperation between global and local methods for the automatic segmentation of speech synthesis corpora. In: Proceedings of Interspeech, Pittsburgh, Pennsylvania, USA, pp. 1666–1669 (2006)Romsdorfer, H., Pfister, B.: Phonetic Labeling and Segmentation of Mixed-Lingual Prosody Databases. In: Proceedings of Interspeech, Lisbon, Portual, pp. 3281–3284 (2005)Paulo, S., Oliveira, L.C.: DTW-based Phonetic Alignment Using Multiple Acoustic Features. In: Proceedings of Eurospeech, Geneva, Switzerland, pp. 309–312 (2003)Park, S.S., Shin, J.W., Kim, N.S.: Automatic Speech Segmentation with Multiple Statistical Models. In: Proceedings of Interspeech, Pittsburgh, Pennsylvania, USA, pp. 2066–2069 (2006)Mporas, I., Ganchev, T., Fakotakis, N.: Speech segmentation using regression fusion of boundary predictions. Computer Speech and Language 24, 273–288 (2010)Povey, D., Woodland, P.C.: Minimum Phone Error and I-smoothing for improved discriminative training. In: Proceedings of ICASSP, Orlando, Florida, USA, pp. 105–108 (2002)Kuo, J.W., Wang, H.M.: Minimum Boundary Error Training for Automatic Phonetic Segmentation. In: Proceedings of Interspeech, Pittsburgh, Pennsylvania, USA, pp. 1217–1220 (2006)Huggins-Daines, D., Rudnicky, A.I.: A Constrained Baum-Welch Algorithm for Improved Phoneme Segmentation and Efficient Training. In: Proceedings of Interspeech, Pittsburgh, Pennsylvania, USA, pp. 1205–1208 (2006)Ogbureke, K.U., Carson-Berndsen, J.: Improving initial boundary estimation for HMM-based automatic phonetic segmentation. In: Proceedings of Interspeech, Brighton, UK, pp. 884–887 (2009)Gómez, J.A., Castro, M.J.: Automatic Segmentation of Speech at the Phonetic Level. In: Caelli, T.M., Amin, A., Duin, R.P.W., Kamel, M.S., de Ridder, D. (eds.) SPR 2002 and SSPR 2002. LNCS, vol. 2396, pp. 672–680. Springer, Heidelberg (2002)Gómez, J.A., Sanchis, E., Castro-Bleda, M.J.: Automatic Speech Segmentation Based on Acoustical Clustering. In: Hancock, E.R., Wilson, R.C., Windeatt, T., Ulusoy, I., Escolano, F. (eds.) SSPR&SPR 2010. LNCS, vol. 6218, pp. 540–548. Springer, Heidelberg (2010)Moreno, A., Poch, D., Bonafonte, A., Lleida, E., Llisterri, J., Mariño, J.B., Nadeu, C.: Albayzin Speech Database: Design of the Phonetic Corpus. In: Proceedings of Eurospeech, Berlin, Germany, vol. 1, pp. 653–656 (September 1993)TIMIT Acoustic-Phonetic Continuous Speech Corpus, National Institute of Standards and Technology Speech Disc 1-1.1, NTIS Order No. PB91-5050651996 (October 1990

    Automatic Quality Estimation for ASR System Combination

    Get PDF
    Recognizer Output Voting Error Reduction (ROVER) has been widely used for system combination in automatic speech recognition (ASR). In order to select the most appropriate words to insert at each position in the output transcriptions, some ROVER extensions rely on critical information such as confidence scores and other ASR decoder features. This information, which is not always available, highly depends on the decoding process and sometimes tends to over estimate the real quality of the recognized words. In this paper we propose a novel variant of ROVER that takes advantage of ASR quality estimation (QE) for ranking the transcriptions at "segment level" instead of: i) relying on confidence scores, or ii) feeding ROVER with randomly ordered hypotheses. We first introduce an effective set of features to compensate for the absence of ASR decoder information. Then, we apply QE techniques to perform accurate hypothesis ranking at segment-level before starting the fusion process. The evaluation is carried out on two different tasks, in which we respectively combine hypotheses coming from independent ASR systems and multi-microphone recordings. In both tasks, it is assumed that the ASR decoder information is not available. The proposed approach significantly outperforms standard ROVER and it is competitive with two strong oracles that e xploit prior knowledge about the real quality of the hypotheses to be combined. Compared to standard ROVER, the abs olute WER improvements in the two evaluation scenarios range from 0.5% to 7.3%

    Automatic speaker segmentation using multiple features and distance measures: a comparison of three approaches

    Get PDF
    This paper addresses the problem of unsupervised speaker change detection. Three systems based on the Bayesian Information Criterion (BIC) are tested. The first system investigates the AudioSpectrumCentroid and the AudioWaveformEnvelope features, implements a dynamic thresholding followed by a fusion scheme, and finally applies BIC. The second method is a real-time one that uses a metric-based approach employing the line spectral pairs and the BIC to validate a potential speaker change point. The third method consists of three modules. In the first module, a measure based on second-order statistics is used; in the second module, the Euclidean distance and T2 Hotelling statistic are applied; and in the third module, the BIC is utilized. The experiments are carried out on a dataset created by concatenating speakers from the TIMIT database, that is referred to as the TIMIT data set. A comparison between the performance of the three systems is made based on t-statistics

    Joint morphological-lexical language modeling for processing morphologically rich languages with application to dialectal Arabic

    Get PDF
    Language modeling for an inflected language such as Arabic poses new challenges for speech recognition and machine translation due to its rich morphology. Rich morphology results in large increases in out-of-vocabulary (OOV) rate and poor language model parameter estimation in the absence of large quantities of data. In this study, we present a joint morphological-lexical language model (JMLLM) that takes advantage of Arabic morphology. JMLLM combines morphological segments with the underlying lexical items and additional available information sources with regards to morphological segments and lexical items in a single joint model. Joint representation and modeling of morphological and lexical items reduces the OOV rate and provides smooth probability estimates while keeping the predictive power of whole words. Speech recognition and machine translation experiments in dialectal-Arabic show improvements over word and morpheme based trigram language models. We also show that as the tightness of integration between different information sources increases, both speech recognition and machine translation performances improve

    Prosody-Based Automatic Segmentation of Speech into Sentences and Topics

    Get PDF
    A crucial step in processing speech audio data for information extraction, topic detection, or browsing/playback is to segment the input into sentence and topic units. Speech segmentation is challenging, since the cues typically present for segmenting text (headers, paragraphs, punctuation) are absent in spoken language. We investigate the use of prosody (information gleaned from the timing and melody of speech) for these tasks. Using decision tree and hidden Markov modeling techniques, we combine prosodic cues with word-based approaches, and evaluate performance on two speech corpora, Broadcast News and Switchboard. Results show that the prosodic model alone performs on par with, or better than, word-based statistical language models -- for both true and automatically recognized words in news speech. The prosodic model achieves comparable performance with significantly less training data, and requires no hand-labeling of prosodic events. Across tasks and corpora, we obtain a significant improvement over word-only models using a probabilistic combination of prosodic and lexical information. Inspection reveals that the prosodic models capture language-independent boundary indicators described in the literature. Finally, cue usage is task and corpus dependent. For example, pause and pitch features are highly informative for segmenting news speech, whereas pause, duration and word-based cues dominate for natural conversation.Comment: 30 pages, 9 figures. To appear in Speech Communication 32(1-2), Special Issue on Accessing Information in Spoken Audio, September 200

    Dialogue Act Modeling for Automatic Tagging and Recognition of Conversational Speech

    Get PDF
    We describe a statistical approach for modeling dialogue acts in conversational speech, i.e., speech-act-like units such as Statement, Question, Backchannel, Agreement, Disagreement, and Apology. Our model detects and predicts dialogue acts based on lexical, collocational, and prosodic cues, as well as on the discourse coherence of the dialogue act sequence. The dialogue model is based on treating the discourse structure of a conversation as a hidden Markov model and the individual dialogue acts as observations emanating from the model states. Constraints on the likely sequence of dialogue acts are modeled via a dialogue act n-gram. The statistical dialogue grammar is combined with word n-grams, decision trees, and neural networks modeling the idiosyncratic lexical and prosodic manifestations of each dialogue act. We develop a probabilistic integration of speech recognition with dialogue modeling, to improve both speech recognition and dialogue act classification accuracy. Models are trained and evaluated using a large hand-labeled database of 1,155 conversations from the Switchboard corpus of spontaneous human-to-human telephone speech. We achieved good dialogue act labeling accuracy (65% based on errorful, automatically recognized words and prosody, and 71% based on word transcripts, compared to a chance baseline accuracy of 35% and human accuracy of 84%) and a small reduction in word recognition error.Comment: 35 pages, 5 figures. Changes in copy editing (note title spelling changed

    An audio-based sports video segmentation and event detection algorithm

    Get PDF
    In this paper, we present an audio-based event detection algorithm shown to be effective when applied to Soccer video. The main benefit of this approach is the ability to recognise patterns that display high levels of crowd response correlated to key events. The soundtrack from a Soccer sequence is first parameterised using Mel-frequency Cepstral coefficients. It is then segmented into homogenous components using a windowing algorithm with a decision process based on Bayesian model selection. This decision process eliminated the need for defining a heuristic set of rules for segmentation. Each audio segment is then labelled using a series of Hidden Markov model (HMM) classifiers, each a representation of one of 6 predefined semantic content classes found in Soccer video. Exciting events are identified as those segments belonging to a crowd cheering class. Experimentation indicated that the algorithm was more effective for classifying crowd response when compared to traditional model-based segmentation and classification techniques

    Symbol Emergence in Robotics: A Survey

    Full text link
    Humans can learn the use of language through physical interaction with their environment and semiotic communication with other people. It is very important to obtain a computational understanding of how humans can form a symbol system and obtain semiotic skills through their autonomous mental development. Recently, many studies have been conducted on the construction of robotic systems and machine-learning methods that can learn the use of language through embodied multimodal interaction with their environment and other systems. Understanding human social interactions and developing a robot that can smoothly communicate with human users in the long term, requires an understanding of the dynamics of symbol systems and is crucially important. The embodied cognition and social interaction of participants gradually change a symbol system in a constructive manner. In this paper, we introduce a field of research called symbol emergence in robotics (SER). SER is a constructive approach towards an emergent symbol system. The emergent symbol system is socially self-organized through both semiotic communications and physical interactions with autonomous cognitive developmental agents, i.e., humans and developmental robots. Specifically, we describe some state-of-art research topics concerning SER, e.g., multimodal categorization, word discovery, and a double articulation analysis, that enable a robot to obtain words and their embodied meanings from raw sensory--motor information, including visual information, haptic information, auditory information, and acoustic speech signals, in a totally unsupervised manner. Finally, we suggest future directions of research in SER.Comment: submitted to Advanced Robotic
    corecore