530 research outputs found

    Integration of a voice recognition system in a social robot

    Get PDF
    Human-Robot Interaction (HRI) 1 is one of the main fields in the study and research of robotics. Within this field, dialog systems and interaction by voice play a very important role. When speaking about human- robot natural dialog we assume that the robot has the capability to accurately recognize the utterance what the human wants to transmit verbally and even its semantic meaning, but this is not always achieved. In this paper we describe the steps and requirements that we went through in order to endow the personal social robot Maggie, developed in the University Carlos III of Madrid, with the capability of understanding the natural language spoken by any human. We have analyzed the different possibilities offered by current software/hardware alternatives by testing them in real environments. We have obtained accurate data related to the speech recognition capabilities in different environments, using the most modern audio acquisition systems and analyzing not so typical parameters as user age, sex, intonation, volume and language. Finally we propose a new model to classify recognition results as accepted and rejected, based in a second ASR opinion. This new approach takes into account the pre-calculated success rate in noise intervals for each recognition framework decreasing false positives and false negatives rate.The funds have provided by the Spanish Government through the project called `Peer to Peer Robot-Human Interaction'' (R2H), of MEC (Ministry of Science and Education), and the project “A new approach to social robotics'' (AROS), of MICINN (Ministry of Science and Innovation). The research leading to these results has received funding from the RoboCity2030-II-CM project (S2009/DPI-1559), funded by Programas de Actividades I+D en la Comunidad de Madrid and cofunded by Structural Funds of the EU

    Developing a Home Service Robot Platform for Smart Homes

    Get PDF
    The purpose of this work is to develop a testbed for a smart home environment integrated with a home service robot (ASH Testbed) as well as to build home service robot platforms. The architecture of ASH Testbed was proposed and implemented based on ROS (Robot Operating System). In addition, two robot platforms, ASCCHomeBots, were developed using an iRobot Create base and a Pioneer base. They are equipped with capabilities such as mapping, autonomous navigation. They are also equipped with the natural human interfaces including hand-gesture recognition using a RGB-D camera, online speech recognition through cloud computing services provided by Google, and local speech recognition based on PocketSphinx. Furthermore, the Pioneer based ASCCHomeBot was developed along with an open audition system. This allows the robot to serve the elderly living alone at home. We successfully implemented the software for this system that realizes robot services and audition services for high level applications such as telepresence video conference, sound source position estimation, multiple source speech recognition, and human assisted sound classification. Our experimental results validated the proposed framework and the effectiveness of the developed robots as well as the proposed testbed.Electrical Engineerin

    Architecture de contrôle d'un robot de téléprésence et d'assistance aux soins à domicile

    Get PDF
    La population vieillissante provoque une croissance des coûts pour les soins hospitaliers. Pour éviter que ces coûts deviennent trop importants, des robots de téléprésence et d’assistance aux soins et aux activités quotidiennes sont envisageables afin de maintenir l’autonomie des personnes âgées à leur domicile. Cependant, les robots actuels possèdent individuellement des fonctionnalités intéressantes, mais il serait bénéfique de pouvoir réunir leurs capacités. Une telle intégration est possible par l’utilisation d’une architecture décisionnelle permettant de jumeler des capacités de navigation, de suivi de la voix et d’acquisition d’informations afin d’assister l’opérateur à distance, voir même s’y substituer. Pour ce projet, l’architecture de contrôle HBBA (Hybrid Behavior-Based Architecture) sert de pilier pour unifier les bibliothèques requises, RTAB-Map (Real-Time Appearance-Based Mapping) et ODAS (Open embeddeD Audition System), pour réaliser cette intégration. RTAB-Map est une bibliothèque permettant la localisation et la cartographie simultanée selon différentes configurations de capteurs tout en respectant les contraintes de traitement en ligne. ODAS est une bibliothèque permettant la localisation, le suivi et la séparation de sources sonores en milieux réels. Les objectifs sont d’évaluer ces capacités en environnement réel en déployant la plateforme robotique dans différents domiciles, et d’évaluer le potentiel d’une telle intégration en réalisant un scénario autonome d’assistance à la prise de mesure de signes vitaux. La plateforme robotique Beam+ est utilisée pour réaliser cette intégration. La plateforme est bonifiée par l’ajout d’une caméra RBG-D, d’une matrice de huit microphones, d’un ordinateur et de batteries supplémentaires. L’implémentation résultante, nommée SAM, a été évaluée dans 10 domiciles pour caractériser la navigation et le suivi de conversation. Les résultats de la navigation suggèrent que les capacités de navigation fonctionnent selon certaines contraintes propres au positionement des capteurs et des conditions environnementales, impliquant la nécessité d’intervention de l’opérateur pour compenser. La modalité de suivi de la voix fonctionne bien dans des environnements calmes, mais des améliorations sont requises en milieu bruyant. Incidemment, la réalisation d’un scénario d’assistance complètement autonome est fonction des performances de la combinaison de ces fonctionnalités, ce qui rend difficile d’envisager le retrait complet d’un opérateur dans la boucle de décision. L’intégration des modalités avec HBBA s’avère possible et concluante, et ouvre la porte à la réutilisabilité de l’implémentation sur d’autres plateformes robotiques qui pourraient venir compenser face aux lacunes observées sur la mise en œuvre avec la plateforme Beam+

    Calibration of sound source localisation for robots using multiple adaptive filter models of the cerebellum

    Get PDF
    The aim of this research was to investigate the calibration of Sound Source Localisation (SSL) for robots using the adaptive filter model of the cerebellum and how this could be automatically adapted for multiple acoustic environments. The role of the cerebellum has mainly been identified in the context of motor control, and only in recent years has it been recognised that it has a wider role to play in the senses and cognition. The adaptive filter model of the cerebellum has been successfully applied to a number of robotics applications but so far none involving auditory sense. Multiple models frameworks such as MOdular Selection And Identification for Control (MOSAIC) have also been developed in the context of motor control, and this has been the inspiration for adaptation of audio calibration in multiple acoustic environments; again, application of this approach in the area of auditory sense is completely new. The thesis showed that it was possible to calibrate the output of an SSL algorithm using the adaptive filter model of the cerebellum, improving the performance compared to the uncalibrated SSL. Using an adaptation of the MOSAIC framework, and specifically using responsibility estimation, a system was developed that was able to select an appropriate set of cerebellar calibration models and to combine their outputs in proportion to how well each was able to calibrate, to improve the SSL estimate in multiple acoustic contexts, including novel contexts. The thesis also developed a responsibility predictor, also part of the MOSAIC framework, and this improved the robustness of the system to abrupt changes in context which could otherwise have resulted in a large performance error. Responsibility prediction also improved robustness to missing ground truth, which could occur in challenging environments where sensory feedback of ground truth may become impaired, which has not been addressed in the MOSAIC literature, adding to the novelty of the thesis. The utility of the so-called cerebellar chip has been further demonstrated through the development of a responsibility predictor that is based on the adaptive filter model of the cerebellum, rather than the more conventional function fitting neural network used in the literature. Lastly, it was demonstrated that the multiple cerebellar calibration architecture is capable of limited self-organising from a de-novo state, with a predetermined number of models. It was also demonstrated that the responsibility predictor could learn against its model after self-organisation, and to a limited extent, during self-organisation. The thesis addresses an important question of how a robot could improve its ability to listen in multiple, challenging acoustic environments, and recommends future work to develop this ability

    Sensory Communication

    Get PDF
    Contains table of contents for Section 2 and reports on five research projects.National Institutes of Health Contract 2 R01 DC00117National Institutes of Health Contract 1 R01 DC02032National Institutes of Health Contract 2 P01 DC00361National Institutes of Health Contract N01 DC22402National Institutes of Health Grant R01-DC001001National Institutes of Health Grant R01-DC00270National Institutes of Health Grant 5 R01 DC00126National Institutes of Health Grant R29-DC00625U.S. Navy - Office of Naval Research Grant N00014-88-K-0604U.S. Navy - Office of Naval Research Grant N00014-91-J-1454U.S. Navy - Office of Naval Research Grant N00014-92-J-1814U.S. Navy - Naval Air Warfare Center Training Systems Division Contract N61339-94-C-0087U.S. Navy - Naval Air Warfare Center Training System Division Contract N61339-93-C-0055U.S. Navy - Office of Naval Research Grant N00014-93-1-1198National Aeronautics and Space Administration/Ames Research Center Grant NCC 2-77

    Sensory Communication

    Get PDF
    Contains table of contents for Section 2, an introduction and reports on fifteen research projects.National Institutes of Health Grant RO1 DC00117National Institutes of Health Grant RO1 DC02032National Institutes of Health Contract P01-DC00361National Institutes of Health Contract N01-DC22402National Institutes of Health/National Institute on Deafness and Other Communication Disorders Grant 2 R01 DC00126National Institutes of Health Grant 2 R01 DC00270National Institutes of Health Contract N01 DC-5-2107National Institutes of Health Grant 2 R01 DC00100U.S. Navy - Office of Naval Research/Naval Air Warfare Center Contract N61339-94-C-0087U.S. Navy - Office of Naval Research/Naval Air Warfare Center Contract N61339-95-K-0014U.S. Navy - Office of Naval Research/Naval Air Warfare Center Grant N00014-93-1-1399U.S. Navy - Office of Naval Research/Naval Air Warfare Center Grant N00014-94-1-1079U.S. Navy - Office of Naval Research Subcontract 40167U.S. Navy - Office of Naval Research Grant N00014-92-J-1814National Institutes of Health Grant R01-NS33778U.S. Navy - Office of Naval Research Grant N00014-88-K-0604National Aeronautics and Space Administration Grant NCC 2-771U.S. Air Force - Office of Scientific Research Grant F49620-94-1-0236U.S. Air Force - Office of Scientific Research Agreement with Brandeis Universit

    Development of the huggable social robot Probo: on the conceptual design and software architecture

    Get PDF
    This dissertation presents the development of a huggable social robot named Probo. Probo embodies a stuffed imaginary animal, providing a soft touch and a huggable appearance. Probo's purpose is to serve as a multidisciplinary research platform for human-robot interaction focused on children. In terms of a social robot, Probo is classified as a social interface supporting non-verbal communication. Probo's social skills are thereby limited to a reactive level. To close the gap with higher levels of interaction, an innovative system for shared control with a human operator is introduced. The software architecture de nes a modular structure to incorporate all systems into a single control center. This control center is accompanied with a 3D virtual model of Probo, simulating all motions of the robot and providing a visual feedback to the operator. Additionally, the model allows us to advance on user-testing and evaluation of newly designed systems. The robot reacts on basic input stimuli that it perceives during interaction. The input stimuli, that can be referred to as low-level perceptions, are derived from vision analysis, audio analysis, touch analysis and object identification. The stimuli will influence the attention and homeostatic system, used to de ne the robot's point of attention, current emotional state and corresponding facial expression. The recognition of these facial expressions has been evaluated in various user-studies. To evaluate the collaboration of the software components, a social interactive game for children, Probogotchi, has been developed. To facilitate interaction with children, Probo has an identity and corresponding history. Safety is ensured through Probo's soft embodiment and intrinsic safe actuation systems. To convey the illusion of life in a robotic creature, tools for the creation and management of motion sequences are put into the hands of the operator. All motions generated from operator triggered systems are combined with the motions originating from the autonomous reactive systems. The resulting motion is subsequently smoothened and transmitted to the actuation systems. With future applications to come, Probo is an ideal platform to create a friendly companion for hospitalised children

    2022 roadmap on neuromorphic computing and engineering

    Full text link
    Modern computation based on von Neumann architecture is now a mature cutting-edge science. In the von Neumann architecture, processing and memory units are implemented as separate blocks interchanging data intensively and continuously. This data transfer is responsible for a large part of the power consumption. The next generation computer technology is expected to solve problems at the exascale with 1018^{18} calculations each second. Even though these future computers will be incredibly powerful, if they are based on von Neumann type architectures, they will consume between 20 and 30 megawatts of power and will not have intrinsic physically built-in capabilities to learn or deal with complex data as our brain does. These needs can be addressed by neuromorphic computing systems which are inspired by the biological concepts of the human brain. This new generation of computers has the potential to be used for the storage and processing of large amounts of digital information with much lower power consumption than conventional processors. Among their potential future applications, an important niche is moving the control from data centers to edge devices. The aim of this roadmap is to present a snapshot of the present state of neuromorphic technology and provide an opinion on the challenges and opportunities that the future holds in the major areas of neuromorphic technology, namely materials, devices, neuromorphic circuits, neuromorphic algorithms, applications, and ethics. The roadmap is a collection of perspectives where leading researchers in the neuromorphic community provide their own view about the current state and the future challenges for each research area. We hope that this roadmap will be a useful resource by providing a concise yet comprehensive introduction to readers outside this field, for those who are just entering the field, as well as providing future perspectives for those who are well established in the neuromorphic computing community
    • …
    corecore