157,805 research outputs found

    Machine Learning for Enhancing Dementia Screening in Ageing Deaf Signers of British Sign Language

    Get PDF
    Real-time hand movement trajectory tracking based on machine learning approaches may assist the early identification of dementia in ageing deaf individuals who are users of British Sign Language (BSL), since there are few clinicians with appropriate communication skills, and a shortage of sign language interpreters. In this paper, we introduce an automatic dementia screening system for ageing Deaf signers of BSL, using a Convolutional Neural Network (CNN) to analyse the sign space envelope and facial expression of BSL signers recorded in normal 2D videos from the BSL corpus. Our approach involves the introduction of a sub-network (the multi-modal feature extractor) which includes an accurate real-time hand trajectory tracking model and a real-time landmark facial motion analysis model. The experiments show the effectiveness of our deep learning based approach in terms of sign space tracking, facial motion tracking and early stage dementia performance assessment tasks

    Developing a Sign Language Video Collection via Metadata and Video Classifiers

    Get PDF
    Video sharing sites have become a central tool for the storage and dissemination of sign language content. Sign language videos have many purposes, including sharing experiences or opinions, teaching and practicing a sign language, etc. However, due to limitations of term-based search, these videos can be hard to locate. This results in a diminished value of these sites for the deaf or hard-of-hearing community. As a result, members of the community frequently engage in a push-style delivery of content, sharing direct links to sign language videos with other members of the sign language community. To address this problem, we propose the Sign Language Digital Library (SLaDL). SLaDL is composed of two main sub-systems, a crawler that collects potential videos for inclusion into the digital library corpus, and an automatic classification system that detects and identifies sign language presence in the crawled videos. These components attempt to filter out videos that do not include sign language from the collection and to organize sign language videos based on different languages. This dissertation explores individual and combined components of the classification system. The components form a cascade of multimodal classifiers aimed at achieving high accuracy when classifying potential videos while minimizing the computational effort. A web application coordinates the execution of these two subsystems and enables user interaction (browsing and searching) with the library corpus. Since the collection of the digital library is automatically curated by the cascading classifier, the number of irrelevant results is expected to be drastically lower when compared to general-purpose video sharing sites. iii Video sharing sites have become a central tool for the storage and dissemination of sign language content. Sign language videos have many purposes, including sharing experiences or opinions, teaching and practicing a sign language, etc. However, due to limitations of term-based search, these videos can be hard to locate. This results in a diminished value of these sites for the deaf or hard-of-hearing community. As a result, members of the community frequently engage in a push-style delivery of content, sharing direct links to sign language videos with other members of the sign language community. To address this problem, we propose the Sign Language Digital Library (SLaDL). SLaDL is composed of two main sub-systems, a crawler that collects potential videos for inclusion into the digital library corpus, and an automatic classification system that detects and identifies sign language presence in the crawled videos. These components attempt to filter out videos that do not include sign language from the collection and to organize sign language videos based on different languages. This dissertation explores individual and combined components of the classification system. The components form a cascade of multimodal classifiers aimed at achieving high accuracy when classifying potential videos while minimizing the computational effort. A web application coordinates the execution of these two subsystems and enables user interaction (browsing and searching) with the library corpus. Since the collection of the digital library is automatically curated by the cascading classifier, the number of irrelevant results is expected to be drastically lower when compared to general-purpose video sharing sites. The evaluation involved a series of experiments focused on specific components of the system, and on analyzing how to best configure SLaDL. In the first set of experiments, we investigated three different crawling approaches, assessing how they compared in terms of both finding a large quantity of sign language videos and expanding the variety of videos in the collection. Secondly, we evaluated the performance of different approaches to multimodal classification in terms of precision, recall, F1 score, and computational costs. Lastly, we incorporated the best multimodal approach into cascading classifiers to reduce computation while preserving accuracy. We experimented with four different cascading configurations and analyzed their performance for the detection and identification of signed content. Given our findings of each experiment, we proposed the set up for an instantiation of SLaDL

    A Multi-modal Machine Learning Approach and Toolkit to Automate Recognition of Early Stages of Dementia among British Sign Language Users

    Get PDF
    The ageing population trend is correlated with an increased prevalence of acquired cognitive impairments such as dementia. Although there is no cure for dementia, a timely diagnosis helps in obtaining necessary support and appropriate medication. Researchers are working urgently to develop effective technological tools that can help doctors undertake early identification of cognitive disorder. In particular, screening for dementia in ageing Deaf signers of British Sign Language (BSL) poses additional challenges as the diagnostic process is bound up with conditions such as quality and availability of interpreters, as well as appropriate questionnaires and cognitive tests. On the other hand, deep learning based approaches for image and video analysis and understanding are promising, particularly the adoption of Convolutional Neural Network (CNN), which require large amounts of training data. In this paper, however, we demonstrate novelty in the following way: a) a multi-modal machine learning based automatic recognition toolkit for early stages of dementia among BSL users in that features from several parts of the body contributing to the sign envelope, e.g., hand-arm movements and facial expressions, are combined, b) universality in that it is possible to apply our technique to users of any sign language, since it is language independent, c) given the trade-off between complexity and accuracy of machine learning (ML) prediction models as well as the limited amount of training and testing data being available, we show that our approach is not over-fitted and has the potential to scale up

    Language and Dialect Identification of Cuneiform Texts

    Full text link
    This article introduces a corpus of cuneiform texts from which the dataset for the use of the Cuneiform Language Identification (CLI) 2019 shared task was derived as well as some preliminary language identification experiments conducted using that corpus. We also describe the CLI dataset and how it was derived from the corpus. In addition, we provide some baseline language identification results using the CLI dataset. To the best of our knowledge, the experiments detailed here are the first time automatic language identification methods have been used on cuneiform data

    A new framework for sign language recognition based on 3D handshape identification and linguistic modeling

    Full text link
    Current approaches to sign recognition by computer generally have at least some of the following limitations: they rely on laboratory conditions for sign production, are limited to a small vocabulary, rely on 2D modeling (and therefore cannot deal with occlusions and off-plane rotations), and/or achieve limited success. Here we propose a new framework that (1) provides a new tracking method less dependent than others on laboratory conditions and able to deal with variations in background and skin regions (such as the face, forearms, or other hands); (2) allows for identification of 3D hand configurations that are linguistically important in American Sign Language (ASL); and (3) incorporates statistical information reflecting linguistic constraints in sign production. For purposes of large-scale computer-based sign language recognition from video, the ability to distinguish hand configurations accurately is critical. Our current method estimates the 3D hand configuration to distinguish among 77 hand configurations linguistically relevant for ASL. Constraining the problem in this way makes recognition of 3D hand configuration more tractable and provides the information specifically needed for sign recognition. Further improvements are obtained by incorporation of statistical information about linguistic dependencies among handshapes within a sign derived from an annotated corpus of almost 10,000 sign tokens

    IEAD: A Novel One-Line Interface to Query Astronomical Science Archives

    Full text link
    In this article I present IEAD, a new interface for astronomical science databases. It is based on a powerful, yet simple, syntax designed to completely abstract the user from the structure of the underlying database. The programming language chosen for its implementation, JavaScript, makes it possible to interact directly with the user and to provide real-time information on the parsing process, error messages, and the name resolution of targets; additionally, the same parsing engine is used for context-sensitive autocompletion. Ultimately, this product should significantly simplify the use of astronomical archives, inspire more advanced uses of them, and allow the user to focus on what scientific research to perform, instead of on how to instruct the computer to do it.Comment: 13 pages, PASP in pres

    Computer-based tracking, analysis, and visualization of linguistically significant nonmanual events in American Sign Language (ASL)

    Full text link
    Our linguistically annotated American Sign Language (ASL) corpora have formed a basis for research to automate detection by computer of essential linguistic information conveyed through facial expressions and head movements. We have tracked head position and facial deformations, and used computational learning to discern specific grammatical markings. Our ability to detect, identify, and temporally localize the occurrence of such markings in ASL videos has recently been improved by incorporation of (1) new techniques for deformable model-based 3D tracking of head position and facial expressions, which provide significantly better tracking accuracy and recover quickly from temporary loss of track due to occlusion; and (2) a computational learning approach incorporating 2-level Conditional Random Fields (CRFs), suited to the multi-scale spatio-temporal characteristics of the data, which analyses not only low-level appearance characteristics, but also the patterns that enable identification of significant gestural components, such as periodic head movements and raised or lowered eyebrows. Here we summarize our linguistically motivated computational approach and the results for detection and recognition of nonmanual grammatical markings; demonstrate our data visualizations, and discuss the relevance for linguistic research; and describe work underway to enable such visualizations to be produced over large corpora and shared publicly on the Web

    Scalable ASL sign recognition using model-based machine learning and linguistically annotated corpora

    Get PDF
    We report on the high success rates of our new, scalable, computational approach for sign recognition from monocular video, exploiting linguistically annotated ASL datasets with multiple signers. We recognize signs using a hybrid framework combining state-of-the-art learning methods with features based on what is known about the linguistic composition of lexical signs. We model and recognize the sub-components of sign production, with attention to hand shape, orientation, location, motion trajectories, plus non-manual features, and we combine these within a CRF framework. The effect is to make the sign recognition problem robust, scalable, and feasible with relatively smaller datasets than are required for purely data-driven methods. From a 350-sign vocabulary of isolated, citation-form lexical signs from the American Sign Language Lexicon Video Dataset (ASLLVD), including both 1- and 2-handed signs, we achieve a top-1 accuracy of 93.3% and a top-5 accuracy of 97.9%. The high probability with which we can produce 5 sign candidates that contain the correct result opens the door to potential applications, as it is reasonable to provide a sign lookup functionality that offers the user 5 possible signs, in decreasing order of likelihood, with the user then asked to select the desired sign

    NEW shared & interconnected ASL resources: SignStream® 3 Software; DAI 2 for web access to linguistically annotated video corpora; and a sign bank

    Get PDF
    2017 marked the release of a new version of SignStream® software, designed to facilitate linguistic analysis of ASL video. SignStream® provides an intuitive interface for labeling and time-aligning manual and non-manual components of the signing. Version 3 has many new features. For example, it enables representation of morpho-phonological information, including display of handshapes. An expanding ASL video corpus, annotated through use of SignStream®, is shared publicly on the Web. This corpus (video plus annotations) is Web-accessible—browsable, searchable, and downloadable—thanks to a new, improved version of our Data Access Interface: DAI 2. DAI 2 also offers Web access to a brand new Sign Bank, containing about 10,000 examples of about 3,000 distinct signs, as produced by up to 9 different ASL signers. This Sign Bank is also directly accessible from within SignStream®, thereby boosting the efficiency and consistency of annotation; new items can also be added to the Sign Bank. Soon to be integrated into SignStream® 3 and DAI 2 are visualizations of computer-generated analyses of the video: graphical display of eyebrow height, eye aperture, an
    • …
    corecore