5,756 research outputs found

    Reinforcement Learning With Temporal Logic Rewards

    Full text link
    Reinforcement learning (RL) depends critically on the choice of reward functions used to capture the de- sired behavior and constraints of a robot. Usually, these are handcrafted by a expert designer and represent heuristics for relatively simple tasks. Real world applications typically involve more complex tasks with rich temporal and logical structure. In this paper we take advantage of the expressive power of temporal logic (TL) to specify complex rules the robot should follow, and incorporate domain knowledge into learning. We propose Truncated Linear Temporal Logic (TLTL) as specifications language, that is arguably well suited for the robotics applications, together with quantitative semantics, i.e., robustness degree. We propose a RL approach to learn tasks expressed as TLTL formulae that uses their associated robustness degree as reward functions, instead of the manually crafted heuristics trying to capture the same specifications. We show in simulated trials that learning is faster and policies obtained using the proposed approach outperform the ones learned using heuristic rewards in terms of the robustness degree, i.e., how well the tasks are satisfied. Furthermore, we demonstrate the proposed RL approach in a toast-placing task learned by a Baxter robot

    Decentralized Cooperative Planning for Automated Vehicles with Hierarchical Monte Carlo Tree Search

    Full text link
    Today's automated vehicles lack the ability to cooperate implicitly with others. This work presents a Monte Carlo Tree Search (MCTS) based approach for decentralized cooperative planning using macro-actions for automated vehicles in heterogeneous environments. Based on cooperative modeling of other agents and Decoupled-UCT (a variant of MCTS), the algorithm evaluates the state-action-values of each agent in a cooperative and decentralized manner, explicitly modeling the interdependence of actions between traffic participants. Macro-actions allow for temporal extension over multiple time steps and increase the effective search depth requiring fewer iterations to plan over longer horizons. Without predefined policies for macro-actions, the algorithm simultaneously learns policies over and within macro-actions. The proposed method is evaluated under several conflict scenarios, showing that the algorithm can achieve effective cooperative planning with learned macro-actions in heterogeneous environments
    • …
    corecore