126 research outputs found

    Best-Quality Vessel Identification Using Vessel Quality Measure in Multiple-Phase Coronary CT Angiography

    Get PDF
    The detection of stenotic plaques strongly depends on the quality of the coronary arterial tree imaged with coronary CT angiography (cCTA). However, it is time consuming for the radiologist to select the best-quality vessels from the multiple-phase cCTA for interpretation in clinical practice. We are developing an automated method for selection of the best-quality vessels from coronary arterial trees in multiple-phase cCTA to facilitate radiologistā€™s reading or computerized analysis. Our automated method consists of vessel segmentation, vessel registration, corresponding vessel branch matching, vessel quality measure (VQM) estimation, and automatic selection of best branches based on VQM. For every branch, the VQM was calculated as the average radial gradient. An observer preference study was conducted to visually compare the quality of the selected vessels. 167 corresponding branch pairs were evaluated by two radiologists. The agreement between the first radiologist and the automated selection was 76% with kappa of 0.49. The agreement between the second radiologist and the automated selection was also 76% with kappa of 0.45. The agreement between the two radiologists was 81% with kappa of 0.57. The observer preference study demonstrated the feasibility of the proposed automated method for the selection of the best-quality vessels from multiple cCTA phases

    Automated quantification and evaluation of motion artifact on coronary CT angiography images

    Get PDF
    Abstract Purpose This study developed and validated a Motion Artifact Quantification algorithm to automatically quantify the severity of motion artifacts on coronary computed tomography angiography (CCTA) images. The algorithm was then used to develop a Motion IQ Decision method to automatically identify whether a CCTA dataset is of sufficient diagnostic image quality or requires further correction. Method The developed Motion Artifact Quantification algorithm includes steps to identify the right coronary artery (RCA) regions of interest (ROIs), segment vessel and shading artifacts, and to calculate the motion artifact score (MAS) metric. The segmentation algorithms were verified against groundā€truth manual segmentations. The segmentation algorithms were also verified by comparing and analyzing the MAS calculated from groundā€truth segmentations and the algorithmā€generated segmentations. The Motion IQ Decision algorithm first identifies slices with unsatisfactory image quality using a MAS threshold. The algorithm then uses an artifactā€length threshold to determine whether the degraded vessel segment is large enough to cause the dataset to be nondiagnostic. An observer study on 30 clinical CCTA datasets was performed to obtain the groundā€truth decisions of whether the datasets were of sufficient image quality. A fiveā€fold crossā€validation was used to identify the thresholds and to evaluate the Motion IQ Decision algorithm. Results The automated segmentation algorithms in the Motion Artifact Quantification algorithm resulted in Dice coefficients of 0.84 for the segmented vessel regions and 0.75 for the segmented shading artifact regions. The MAS calculated using the automated algorithm was within 10% of the values obtained using groundā€truth segmentations. The MAS threshold and artifactā€length thresholds were determined by the ROC analysis to be 0.6 and 6.25 mm by all folds. The Motion IQ Decision algorithm demonstrated 100% sensitivity, 66.7% Ā± 27.9% specificity, and a total accuracy of 86.7% Ā± 12.5% for identifying datasets in which the RCA required correction. The Motion IQ Decision algorithm demonstrated 91.3% sensitivity, 71.4% specificity, and a total accuracy of 86.7% for identifying CCTA datasets that need correction for any of the three main vessels. Conclusion The Motion Artifact Quantification algorithm calculated accurate

    Clinical evaluation of new automatic coronary specific best cardiac phase selection algortithm for single-beat coronary CT angiography

    Get PDF
    The aim of this study was to evaluate the workflow efficiency of a new automatic coronary-specific reconstruction technique (Smart Phase, GE Healthcareā€”SP) for selection of the best cardiac phase with least coronary motion when compared with expert manual selection (MS) of best phase in patients with high heart rate. A total of 46 patients with heart rates above 75 bpm who underwent single beat coronary computed tomography angiography (CCTA) were enrolled in this study. CCTA of all subjects were performed on a 256-detector row CT scanner (Revolution CT, GE Healthcare, Waukesha, Wisconsin, US). With the SP technique, the acquired phase range was automatically searched in 2% phase intervals during the reconstruction process to determine the optimal phase for coronary assessment, while for routine expert MS, reconstructions were performed at 5% intervals and a best phase was manually determined. The reconstruction and review times were recorded to measure the workflow efficiency for each method. Two reviewers subjectively assessed image quality for each coronary artery in the MS and SP reconstruction volumes using a 4-point grading scale. The average HR of the enrolled patients was 91.1Ā±19.0bpm. A total of 204 vessels were assessed. The subjective image quality using SP was comparable to that of the MS, 1.45Ā±0.85 vs 1.43Ā±0.81 respectively (p = 0.88). The average time was 246 seconds for the manual best phase selection, and 98 seconds for the SP selection, resulting in average time saving of 148 seconds (60%) with use of the SP algorithm. The coronary specific automatic cardiac best phase selection technique (Smart Phase) improves clinical workflow in high heart rate patients and provides image quality comparable with manual cardiac best phase selection. Reconstruction of single-beat CCTA exams with SP can benefit the users with less experienced in CCTA image interpretation

    Evaluation of Motion Artifact Metrics for Coronary CT Angiography

    Get PDF
    Purpose This study quantified the performance of coronary artery motion artifact metrics relative to human observer ratings. Motion artifact metrics have been used as part of motion correction and bestā€phase selection algorithms for Coronary Computed Tomography Angiography (CCTA). However, the lack of ground truth makes it difficult to validate how well the metrics quantify the level of motion artifact. This study investigated five motion artifact metrics, including two novel metrics, using a dynamic phantom, clinical CCTA images, and an observer study that provided groundā€truth motion artifact scores from a series of pairwise comparisons. Method Five motion artifact metrics were calculated for the coronary artery regions on both phantom and clinical CCTA images: positivity, entropy, normalized circularity, Fold Overlap Ratio (FOR), and Lowā€Intensity Region Score (LIRS). CT images were acquired of a dynamic cardiac phantom that simulated cardiac motion and contained six iodineā€filled vessels of varying diameter and with regions of soft plaque and calcifications. Scans were repeated with different gantry start angles. Images were reconstructed at five phases of the motion cycle. Clinical images were acquired from 14 CCTA exams with patient heart rates ranging from 52 to 82 bpm. The vessel and shading artifacts were manually segmented by three readers and combined to create groundā€truth artifact regions. Motion artifact levels were also assessed by readers using a pairwise comparison method to establish a groundā€truth reader score. The Kendall\u27s Tau coefficients were calculated to evaluate the statistical agreement in ranking between the motion artifacts metrics and reader scores. Linear regression between the reader scores and the metrics was also performed. Results On phantom images, the Kendall\u27s Tau coefficients of the five motion artifact metrics were 0.50 (normalized circularity), 0.35 (entropy), 0.82 (positivity), 0.77 (FOR), 0.77(LIRS), where higher Kendall\u27s Tau signifies higher agreement. The FOR, LIRS, and transformed positivity (the fourth root of the positivity) were further evaluated in the study of clinical images. The Kendall\u27s Tau coefficients of the selected metrics were 0.59 (FOR), 0.53 (LIRS), and 0.21 (Transformed positivity). In the study of clinical data, a Motion Artifact Score, defined as the product of FOR and LIRS metrics, further improved agreement with reader scores, with a Kendall\u27s Tau coefficient of 0.65. Conclusion The metrics of FOR, LIRS, and the product of the two metrics provided the highest agreement in motion artifact ranking when compared to the readers, and the highest linear correlation to the reader scores. The validated motion artifact metrics may be useful for developing and evaluating methods to reduce motion in Coronary Computed Tomography Angiography (CCTA) images

    Automated Selection of the Optimal Cardiac Phase for Single-Beat Coronary CT Angiography Reconstruction

    Get PDF
    This thesis investigates an automated algorithm for selecting the optimal cardiac phase for CCTA reconstruction. Reconstructing a low-motion cardiac phase improves coronary artery visualization in coronary CT angiography (CCTA) exams. Currently, standard end-systole and/or mid-diastole default phases are prescribed or alternatively, quiescent phases are determined by the user. As manual selection may be time-consuming and standard locations may be suboptimal due to patient variability, an automated method is investigated. An automated algorithm was developed to select the optimal phase based on quantitative image quality (IQ) metrics. For each reconstructed slice at each reconstructed phase, an image quality metric was calculated based on measures of circularity and edge strength of through-plane vessels. The image quality metric was aggregated across slices, while a metric of vessel-location consistency was used to ignore slices that did not contain through-plane vessels. A binary metric based on the edge strength of in-plane vessels was calculated to determine if IQ of in-plane vessels was acceptable. The algorithm performance was evaluated using two observer studies. Fourteen single-beat CCTA exams (Revolution CT, GE Healthcare) reconstructed at 2% intervals were evaluated for best systolic (1), diastolic (6), or systolic and diastolic phases (7) by three readers and the algorithm. Inter-reader (RR) and reader-algorithm (RA) agreement was calculated using the mean absolute difference (MAD) and concordance correlation coefficient (CCC). A reader-consensus best phase was determined and compared to the algorithm selected phase. In cases where the algorithm and consensus best phases differed by more than 2%, IQ was scored by three readers using a 5pt Likert scale. There was no significant difference between RR and RA agreement for either MAD or CCC metrics (p\u3e0.2). The algorithm phase was within 2% of the consensus phase in 71% of cases. There was no significant difference (p\u3e0.2) between the IQ of the algorithm phase (4.06Ā±0.73) and the consensus phase (4.11Ā±0.76). The proposed algorithm was statistically equivalent to a reader in selecting an optimal cardiac phase for CCTA exams. When reader and algorithm phases differed by \u3e2%, IQ was statistically equivalent

    Diagnosis of coronary stenosis with CT angiography comparison of automated computer diagnosis with expert readings.

    Get PDF
    RATIONALE AND OBJECTIVES: To compare computer-generated interpretation of coronary computed tomography angiography (cCTA) by commercially available COR Analyzer software with expert human interpretation. MATERIALS AND METHODS: This retrospective Health Insurance Portability and Accountability Actā€‘compliant study was approved by the institutional review board. Among 225 consecutive cCTA examinations, 207 were of adequate quality for automated evaluation. COR Analyzer interpretation was compared to human expert interpretation for detection of stenosis defined as ā‰„50% vessel diameter reduction in the left main, left anterior descending (LAD), circumflex (LCX), right coronary artery (RCA), or a branch vessel (diagonal, ramus, obtuse marginal, or posterior descending artery). RESULTS: Among 207 cases evaluated by COR Analyzer, human expert interpretation identified 48 patients with stenosis. COR Analyzer identified 44/48 patients (sensitivity 92%) with a specificity of 70%, a negative predictive value of 97% and a positive predictive value of 48%. COR Analyzer agreed with the expert interpretation in 75% of patients. With respect to individual segments, COR Analyzer detected 9/10 left main lesions, 33/34 LAD lesions, 14/15 LCX lesions, 27/31 RCA lesions, and 8/11 branch lesions. False-positive interpretations were localized to the left main (n = 16), LAD (n = 26), LCX (n = 21), RCA (n = 21), and branch vessels (n = 23), and were related predominantly to calcified vessels, blurred vessels, misidentification of vessels and myocardial bridges. CONCLUSIONS: Automated computer interpretation of cCTA with COR Analyzer provides high negative predictive value for the diagnosis of coronary disease in major coronary arteries as well as first-order arterial branches. False-positive automated interpretations are related to anatomic and image quality considerations

    Deep Learning from Dual-Energy Information for Whole-Heart Segmentation in Dual-Energy and Single-Energy Non-Contrast-Enhanced Cardiac CT

    Full text link
    Deep learning-based whole-heart segmentation in coronary CT angiography (CCTA) allows the extraction of quantitative imaging measures for cardiovascular risk prediction. Automatic extraction of these measures in patients undergoing only non-contrast-enhanced CT (NCCT) scanning would be valuable. In this work, we leverage information provided by a dual-layer detector CT scanner to obtain a reference standard in virtual non-contrast (VNC) CT images mimicking NCCT images, and train a 3D convolutional neural network (CNN) for the segmentation of VNC as well as NCCT images. Contrast-enhanced acquisitions on a dual-layer detector CT scanner were reconstructed into a CCTA and a perfectly aligned VNC image. In each CCTA image, manual reference segmentations of the left ventricular (LV) myocardium, LV cavity, right ventricle, left atrium, right atrium, ascending aorta, and pulmonary artery trunk were obtained and propagated to the corresponding VNC image. These VNC images and reference segmentations were used to train 3D CNNs for automatic segmentation in either VNC images or NCCT images. Automatic segmentations in VNC images showed good agreement with reference segmentations, with an average Dice similarity coefficient of 0.897 \pm 0.034 and an average symmetric surface distance of 1.42 \pm 0.45 mm. Volume differences [95% confidence interval] between automatic NCCT and reference CCTA segmentations were -19 [-67; 30] mL for LV myocardium, -25 [-78; 29] mL for LV cavity, -29 [-73; 14] mL for right ventricle, -20 [-62; 21] mL for left atrium, and -19 [-73; 34] mL for right atrium, respectively. In 214 (74%) NCCT images from an independent multi-vendor multi-center set, two observers agreed that the automatic segmentation was mostly accurate or better. This method might enable quantification of additional cardiac measures from NCCT images for improved cardiovascular risk prediction
    • ā€¦
    corecore