32 research outputs found

    Automated liver tissues delineation based on machine learning techniques: A survey, current trends and future orientations

    Get PDF
    There is no denying how machine learning and computer vision have grown in the recent years. Their highest advantages lie within their automation, suitability, and ability to generate astounding results in a matter of seconds in a reproducible manner. This is aided by the ubiquitous advancements reached in the computing capabilities of current graphical processing units and the highly efficient implementation of such techniques. Hence, in this paper, we survey the key studies that are published between 2014 and 2020, showcasing the different machine learning algorithms researchers have used to segment the liver, hepatic-tumors, and hepatic-vasculature structures. We divide the surveyed studies based on the tissue of interest (hepatic-parenchyma, hepatic-tumors, or hepatic-vessels), highlighting the studies that tackle more than one task simultaneously. Additionally, the machine learning algorithms are classified as either supervised or unsupervised, and further partitioned if the amount of works that fall under a certain scheme is significant. Moreover, different datasets and challenges found in literature and websites, containing masks of the aforementioned tissues, are thoroughly discussed, highlighting the organizers original contributions, and those of other researchers. Also, the metrics that are used excessively in literature are mentioned in our review stressing their relevancy to the task at hand. Finally, critical challenges and future directions are emphasized for innovative researchers to tackle, exposing gaps that need addressing such as the scarcity of many studies on the vessels segmentation challenge, and why their absence needs to be dealt with in an accelerated manner.Comment: 41 pages, 4 figures, 13 equations, 1 table. A review paper on liver tissues segmentation based on automated ML-based technique

    Automatic segmentation of kidney and liver tumors in CT images

    Get PDF
    Automatic segmentation of hepatic lesions in computed tomography (CT) images is a challenging task to perform due to heterogeneous, diffusive shape of tumors and complex background. To address the problem more and more researchers rely on assistance of deep convolutional neural networks (CNN) with 2D or 3D type architecture that have proven to be effective in a wide range of computer vision tasks, including medical image processing. In this technical report, we carry out research focused on more careful approach to the process of learning rather than on complex architecture of the CNN. We have chosen MICCAI 2017 LiTS dataset for training process and the public 3DIRCADb dataset for validation of our method. The proposed algorithm reached DICE score 78.8% on the 3DIRCADb dataset. The described method was then applied to the 2019 Kidney Tumor Segmentation (KiTS-2019) challenge, where our single submission achieved 96.38% for kidney and 67.38% for tumor Dice scores

    Deep learning for image-based liver analysis — A comprehensive review focusing on malignant lesions

    Get PDF
    Deep learning-based methods, in particular, convolutional neural networks and fully convolutional networks are now widely used in the medical image analysis domain. The scope of this review focuses on the analysis using deep learning of focal liver lesions, with a special interest in hepatocellular carcinoma and metastatic cancer; and structures like the parenchyma or the vascular system. Here, we address several neural network architectures used for analyzing the anatomical structures and lesions in the liver from various imaging modalities such as computed tomography, magnetic resonance imaging and ultrasound. Image analysis tasks like segmentation, object detection and classification for the liver, liver vessels and liver lesions are discussed. Based on the qualitative search, 91 papers were filtered out for the survey, including journal publications and conference proceedings. The papers reviewed in this work are grouped into eight categories based on the methodologies used. By comparing the evaluation metrics, hybrid models performed better for both the liver and the lesion segmentation tasks, ensemble classifiers performed better for the vessel segmentation tasks and combined approach performed better for both the lesion classification and detection tasks. The performance was measured based on the Dice score for the segmentation, and accuracy for the classification and detection tasks, which are the most commonly used metrics.publishedVersio

    Liver Segmentation and Liver Cancer Detection Based on Deep Convolutional Neural Network: A Brief Bibliometric Survey

    Get PDF
    Background: This study analyzes liver segmentation and cancer detection work, with the perspectives of machine learning and deep learning and different image processing techniques from the year 2012 to 2020. The study uses different Bibliometric analysis methods. Methods: The articles on the topic were obtained from one of the most popular databases- Scopus. The year span for the analysis is considered to be from 2012 to 2020. Scopus analyzer facilitates the analysis of the databases with different categories such as documents by source, year, and county and so on. Analysis is also done by using different units of analysis such as co-authorship, co-occurrences, citation analysis etc. For this analysis Vosviewer Version 1.6.15 is used. Results: In the study, a total of 518 articles on liver segmentation and liver cancer were obtained between the years 2012 to 2020. From the statistical analysis and network analysis it can be concluded that, the maximum articles are published in the year 2020 with China is the highest contributor followed by United States and India. Conclusions: Outcome from Scoups database is 518 articles with English language has the largest number of articles. Statistical analysis is done in terms of different parameters such as Authors, documents, country, affiliation etc. The analysis clearly indicates the potential of the topic. Network analysis of different parameters is also performed. This also indicate that there is a lot of scope for further research in terms of advanced algorithms of computer vision, deep learning and machine learning

    Automated liver tissues delineation techniques: A systematic survey on machine learning current trends and future orientations

    Get PDF
    Machine learning and computer vision techniques have grown rapidly in recent years due to their automation, suitability, and ability to generate astounding results. Hence, in this paper, we survey the key studies that are published between 2014 and 2022, showcasing the different machine learning algorithms researchers have used to segment the liver, hepatic tumors, and hepatic-vasculature structures. We divide the surveyed studies based on the tissue of interest (hepatic-parenchyma, hepatic-tumors, or hepatic-vessels), highlighting the studies that tackle more than one task simultaneously. Additionally, the machine learning algorithms are classified as either supervised or unsupervised, and they are further partitioned if the amount of work that falls under a certain scheme is significant. Moreover, different datasets and challenges found in literature and websites containing masks of the aforementioned tissues are thoroughly discussed, highlighting the organizers' original contributions and those of other researchers. Also, the metrics used excessively in the literature are mentioned in our review, stressing their relevance to the task at hand. Finally, critical challenges and future directions are emphasized for innovative researchers to tackle, exposing gaps that need addressing, such as the scarcity of many studies on the vessels' segmentation challenge and why their absence needs to be dealt with sooner than later. 2022 The Author(s)This publication was made possible by an Award [GSRA6-2-0521-19034] from Qatar National Research Fund (a member of Qatar Foundation). The contents herein are solely the responsibility of the authors. Open Access funding provided by the Qatar National LibraryScopu
    corecore