44 research outputs found

    Segmentation of Melanoma Skin Lesion Using Perceptual Color Difference Saliency with Morphological Analysis

    Get PDF
    The prevalence of melanoma skin cancer disease is rapidly increasing as recorded death cases of its patients continue to annually escalate. Reliable segmentation of skin lesion is one essential requirement of an efficient noninvasive computer aided diagnosis tool for accelerating the identification process of melanoma. This paper presents a new algorithm based on perceptual color difference saliency along with binary morphological analysis for segmentation of melanoma skin lesion in dermoscopic images. The new algorithm is compared with existing image segmentation algorithms on benchmark dermoscopic images acquired from public corpora. Results of both qualitative and quantitative evaluations of the new algorithm are encouraging as the algorithm performs excellently in comparison with the existing image segmentation algorithms

    Towards the automatic detection of skin lesion shape asymmetry, color variegation and diameter in dermoscopic images

    Get PDF
    Asymmetry, color variegation and diameter are considered strong indicators of malignant melanoma. The subjectivity inherent in the first two features and the fact that 10% of melanomas tend to be missed in the early diagnosis due to having a diameter less than 6mm, deem it necessary to develop an objective computer vision system to evaluate these criteria and aid in the early detection of melanoma which could eventually lead to a higher 5-year survival rate. This paper proposes an approach for evaluating the three criteria objectively, whereby we develop a measure to find asymmetry with the aid of a decision tree which we train on the extracted asymmetry measures and then use to predict the asymmetry of new skin lesion images. A range of colors that demonstrate the suspicious colors for the color variegation feature have been derived, and Feret’s diameter has been utilized to find the diameter of the skin lesion. The decision tree is 80% accurate in determining the asymmetry of skin lesions, and the number of suspicious colors and diameter values are objectively identified

    COMPARATIVE STUDY FOR MELANOMA SEGMENTATION IN SKIN LESION IMAGES

    Get PDF
    Melanoma is the leading cause of fatalities among skin can-cers and the discovery of the pathology in the early stagesis essential to increase the chances of cure. Computationalmethods through medical imaging are being developed tofacilitate the detection of melanoma. To interpret informa-tion in these images eciently, it is necessary to isolate theaected region. In our research, a comparison was made be-tween segmentation techniques, rstly a method based onthe Otsu algorithm, secondly the K-means clustering algo-rithm and nally,the U-net deep learning was developed.The tests performed on the PH2 images base had promisingresults, especially U-net

    Towards the early detection of melanoma by automating the measurement of asymmetry, border irregularity, color variegation, and diameter in dermoscopy images

    Get PDF
    The incidence of melanoma, the most aggressive form of skin cancer, has increased more than many other cancers in recent years. The aim of this thesis is to develop objective measures and automated methods to evaluate the ABCD (Asymmetry, Border irregularity, Color variegation, and Diameter) rule features in dermoscopy images, a popular method that provides a simple means for appraisal of pigmented lesions that might require further investigation by a specialist. However, research gaps in evaluating those features have been encountered in literature. To extract skin lesions, two segmentation approaches that are robust to inherent dermoscopic image problems have been proposed, and showed to outperform other approaches used in literature. Measures for finding asymmetry and border irregularity have been developed. The asymmetry measure describes invariant features, provides a compactness representation of the image, and captures discriminative properties of skin lesions. The border irregularity measure, which is preceded by a border detection step carried out by a novel edge detection algorithm that represents the image in terms of fuzzy concepts, is rotation invariant, characterizes the complexity of the shape associated with the border, and robust to noise. To automate the measures, classification methods that are based on ensemble learning and which take the ambiguity of data into consideration have been proposed. Color variegation was evaluated by determining the suspicious colors of melanoma from a generated color palette for the image, and the diameter of the skin lesion was measured using a shape descriptor that was eventually represented in millimeters. The work developed in the thesis reflects the automatic dermoscopic image analysis standard pipeline, and a computer-aided diagnosis system (CAD) for the automatic detection and objective evaluation of the ABCD rule features. It can be used as an objective bedside tool serving as a diagnostic adjunct in the clinical assessment of skin lesions

    A new swarm intelligence information technique for improving information balancedness on the skin lesions segmentation

    Get PDF
    Methods of image processing can recognize the images of melanoma lesions border in addition to the disease compared to a skilled dermatologist. New swarm intelligence technique depends on meta-heuristic that is industrialized to resolve composite real problems which are problematic to explain by the available deterministic approaches. For an accurate detection of all segmentation and classification of skin lesions, some dealings should be measured which contain, contrast broadening, irregularity quantity, choice of most optimal features, and so into the world. The price essential for the action of progressive disease cases is identical high and the survival percentage is low. Many electronic dermoscopy classifications are advanced depend on the grouping of form, surface and dye features to facilitate premature analysis of malignance. To overcome this problematic, an effective prototypical for accurate boundary detection and arrangement is obtainable. The projected classical recovers the optimization segment of accuracy in its pre-processing stage, applying contrast improvement of lesion area compared to the contextual. In conclusion, optimized features are future fed into of artifical bee colony (ABC) segmentation. Wide-ranging researches have been supported out on four databases named as, ISBI (2016, 2017, 2018) and PH2. Also, the selection technique outclasses and successfully indifferent the dismissed features. The paper shows a different process for lesions optimal segmentation that could be functional to a variation of images with changed possessions and insufficiencies is planned with multistep pre-processing stage
    corecore