2,380 research outputs found

    ORCA-SPOT: An Automatic Killer Whale Sound Detection Toolkit Using Deep Learning

    Get PDF
    Large bioacoustic archives of wild animals are an important source to identify reappearing communication patterns, which can then be related to recurring behavioral patterns to advance the current understanding of intra-specific communication of non-human animals. A main challenge remains that most large-scale bioacoustic archives contain only a small percentage of animal vocalizations and a large amount of environmental noise, which makes it extremely difficult to manually retrieve sufficient vocalizations for further analysis – particularly important for species with advanced social systems and complex vocalizations. In this study deep neural networks were trained on 11,509 killer whale (Orcinus orca) signals and 34,848 noise segments. The resulting toolkit ORCA-SPOT was tested on a large-scale bioacoustic repository – the Orchive – comprising roughly 19,000 hours of killer whale underwater recordings. An automated segmentation of the entire Orchive recordings (about 2.2 years) took approximately 8 days. It achieved a time-based precision or positive-predictive-value (PPV) of 93.2% and an area-under-the-curve (AUC) of 0.9523. This approach enables an automated annotation procedure of large bioacoustics databases to extract killer whale sounds, which are essential for subsequent identification of significant communication patterns. The code will be publicly available in October 2019 to support the application of deep learning to bioaoucstic research. ORCA-SPOT can be adapted to other animal species

    A toolbox for animal call recognition

    Get PDF
    Monitoring the natural environment is increasingly important as habit degradation and climate change reduce theworld’s biodiversity.We have developed software tools and applications to assist ecologists with the collection and analysis of acoustic data at large spatial and temporal scales.One of our key objectives is automated animal call recognition, and our approach has three novel attributes. First, we work with raw environmental audio, contaminated by noise and artefacts and containing calls that vary greatly in volume depending on the animal’s proximity to the microphone. Second, initial experimentation suggested that no single recognizer could dealwith the enormous variety of calls. Therefore, we developed a toolbox of generic recognizers to extract invariant features for each call type. Third, many species are cryptic and offer little data with which to train a recognizer. Many popular machine learning methods require large volumes of training and validation data and considerable time and expertise to prepare. Consequently we adopt bootstrap techniques that can be initiated with little data and refined subsequently. In this paper, we describe our recognition tools and present results for real ecological problems

    Unsupervised classification to improve the quality of a bird song recording dataset

    Full text link
    Open audio databases such as Xeno-Canto are widely used to build datasets to explore bird song repertoire or to train models for automatic bird sound classification by deep learning algorithms. However, such databases suffer from the fact that bird sounds are weakly labelled: a species name is attributed to each audio recording without timestamps that provide the temporal localization of the bird song of interest. Manual annotations can solve this issue, but they are time consuming, expert-dependent, and cannot run on large datasets. Another solution consists in using a labelling function that automatically segments audio recordings before assigning a label to each segmented audio sample. Although labelling functions were introduced to expedite strong label assignment, their classification performance remains mostly unknown. To address this issue and reduce label noise (wrong label assignment) in large bird song datasets, we introduce a data-centric novel labelling function composed of three successive steps: 1) time-frequency sound unit segmentation, 2) feature computation for each sound unit, and 3) classification of each sound unit as bird song or noise with either an unsupervised DBSCAN algorithm or the supervised BirdNET neural network. The labelling function was optimized, validated, and tested on the songs of 44 West-Palearctic common bird species. We first showed that the segmentation of bird songs alone aggregated from 10% to 83% of label noise depending on the species. We also demonstrated that our labelling function was able to significantly reduce the initial label noise present in the dataset by up to a factor of three. Finally, we discuss different opportunities to design suitable labelling functions to build high-quality animal vocalizations with minimum expert annotation effort
    • …
    corecore