74 research outputs found

    Customizable tubular model for n-furcating blood vessels and its application to 3D reconstruction of the cerebrovascular system

    Get PDF
    Understanding the 3D cerebral vascular network is one of the pressing issues impacting the diagnostics of various systemic disorders and is helpful in clinical therapeutic strategies. Unfortunately, the existing software in the radiological workstation does not meet the expectations of radiologists who require a computerized system for detailed, quantitative analysis of the human cerebrovascular system in 3D and a standardized geometric description of its components. In this study, we show a method that uses 3D image data from magnetic resonance imaging with contrast to create a geometrical reconstruction of the vessels and a parametric description of the reconstructed segments of the vessels. First, the method isolates the vascular system using controlled morphological growing and performs skeleton extraction and optimization. Then, around the optimized skeleton branches, it creates tubular objects optimized for quality and accuracy of matching with the originally isolated vascular data. Finally, it optimizes the joints on n-furcating vessel segments. As a result, the algorithm gives a complete description of shape, position in space, position relative to other segments, and other anatomical structures of each cerebrovascular system segment. Our method is highly customizable and in principle allows reconstructing vascular structures from any 2D or 3D data. The algorithm solves shortcomings of currently available methods including failures to reconstruct the vessel mesh in the proximity of junctions and is free of mesh collisions in high curvature vessels. It also introduces a number of optimizations in the vessel skeletonization leading to a more smooth and more accurate model of the vessel network. We have tested the method on 20 datasets from the public magnetic resonance angiography image database and show that the method allows for repeatable and robust segmentation of the vessel network and allows to compute vascular lateralization indices. Graphical abstract: [Figure not available: see fulltext.]</p

    Accurate Segmentation of Cerebrovasculature from TOF-MRA Images Using Appearance Descriptors

    Get PDF
    © 2013 IEEE. Analyzing cerebrovascular changes can significantly lead to not only detecting the presence of serious diseases e.g., hypertension and dementia, but also tracking their progress. Such analysis could be better performed using Time-of-Flight Magnetic Resonance Angiography (ToF-MRA) images, but this requires accurate segmentation of the cerebral vasculature from the surroundings. To achieve this goal, we propose a fully automated cerebral vasculature segmentation approach based on extracting both prior and current appearance features that have the ability to capture the appearance of macro and micro-vessels in ToF-MRA. The appearance prior is modeled with a novel translation and rotation invariant Markov-Gibbs Random Field (MGRF) of voxel intensities with pairwise interaction analytically identified from a set of training data sets. The appearance of the cerebral vasculature is also represented with a marginal probability distribution of voxel intensities by using a Linear Combination of Discrete Gaussians (LCDG) that its parameters are estimated by using a modified Expectation-Maximization (EM) algorithm. The extracted appearance features are separable and can be classified by any classifier, as demonstrated by our segmentation results. To validate the accuracy of our algorithm, we tested the proposed approach on in-vivo data using 270 data sets, which were qualitatively validated by a neuroradiology expert. The results were quantitatively validated using the three commonly used metrics for segmentation evaluation: the Dice coefficient, the modified Hausdorff distance, and the absolute volume difference. The proposed approach showed a higher accuracy compared to two of the existing segmentation approaches

    Echocardiography

    Get PDF
    The book "Echocardiography - New Techniques" brings worldwide contributions from highly acclaimed clinical and imaging science investigators, and representatives from academic medical centers. Each chapter is designed and written to be accessible to those with a basic knowledge of echocardiography. Additionally, the chapters are meant to be stimulating and educational to the experts and investigators in the field of echocardiography. This book is aimed primarily at cardiology fellows on their basic echocardiography rotation, fellows in general internal medicine, radiology and emergency medicine, and experts in the arena of echocardiography. Over the last few decades, the rate of technological advancements has developed dramatically, resulting in new techniques and improved echocardiographic imaging. The authors of this book focused on presenting the most advanced techniques useful in today's research and in daily clinical practice. These advanced techniques are utilized in the detection of different cardiac pathologies in patients, in contributing to their clinical decision, as well as follow-up and outcome predictions. In addition to the advanced techniques covered, this book expounds upon several special pathologies with respect to the functions of echocardiography

    Measuring blood flow and pulsatility with MRI: optimisation, validation and application in cerebral small vessel disease

    Get PDF
    Cerebral small vessel disease (SVD) is the breakdown of the small blood vessels of the brain, leading to many cases of stroke and dementia. The pathophysiology of SVD is largely unknown, although several mechanisms have been suggested. One such mechanism is the role of increased blood flow pulsatility into the brain, caused by vessel stiffening, leading to damage of the microvasculature. Magnetic resonance imaging (MRI) allows us to non-invasively measure blood flow and velocity using a technique called phase contrast-MRI – traditionally used with 2D slices across the vessel(s) of interest. An advanced form of phase-contrast MRI, known as 4D flow, has emerged in recent years that allows for a volume of data to be acquired, containing velocity information in all directions. However, to keep scan times practical when collecting this amount of data, spatiotemporal resolution has to be sacrificed. The main aim of this thesis was to assess 4D flow’s capabilities, including comparing it to the more well-established 2D method in healthy volunteers, patients, and phantom experiments, so as to better understand its role in investigating SVD. Another aim was to learn more about the role of flow and pulsatility in SVD development in patients using data acquired in the longitudinal Mild Stroke Study 3 (MSS3). Firstly, I systematically reviewed studies that have assessed the human brain using 4D flow. Across 61 relevant studies, I found a general consensus for the current use of the technique in this context. I then optimised the Siemens prototype 4D flow sequence (N = 11 healthy volunteers), testing different parameters to find the combination that best balanced scan quality and duration. I then assessed the test-retest repeatability and intra-rater reliability of both 2D and 4D methods (N = 11 healthy volunteers), as well as differences between them. Following this, I performed the same 4D-2D comparison on SVD patients (N = 10). Absolute flow measurements using 4D flow were shown to have moderate repeatability and reliability, while flow pulsatility measurements showed acceptable repeatability and reliability. Furthermore, 2D arterial pulsatility was measured higher than with 4D, while 4D often measured higher flow rates than 2D. 4D flow was shown to be feasible when used on SVD patients, with no noticeable issues caused by potential patient movement. Flow data analysis from the longitudinal SVD study MSS3 showed that intracranial pulsatility is associated with cross-sectional SVD lesion volume but not longitudinal lesion growth, with stronger associations seen in the arteries of the neck compared to the venous sinuses
    • …
    corecore