15 research outputs found

    Computationally Efficient and Robust BIC-Based Speaker Segmentation

    Get PDF
    An algorithm for automatic speaker segmentation based on the Bayesian information criterion (BIC) is presented. BIC tests are not performed for every window shift, as previously, but when a speaker change is most probable to occur. This is done by estimating the next probable change point thanks to a model of utterance durations. It is found that the inverse Gaussian fits best the distribution of utterance durations. As a result, less BIC tests are needed, making the proposed system less computationally demanding in time and memory, and considerably more efficient with respect to missed speaker change points. A feature selection algorithm based on branch and bound search strategy is applied in order to identify the most efficient features for speaker segmentation. Furthermore, a new theoretical formulation of BIC is derived by applying centering and simultaneous diagonalization. This formulation is considerably more computationally efficient than the standard BIC, when the covariance matrices are estimated by other estimators than the usual maximum-likelihood ones. Two commonly used pairs of figures of merit are employed and their relationship is established. Computational efficiency is achieved through the speaker utterance modeling, whereas robustness is achieved by feature selection and application of BIC tests at appropriately selected time instants. Experimental results indicate that the proposed modifications yield a superior performance compared to existing approaches

    Speaker segmentation and clustering

    Get PDF
    This survey focuses on two challenging speech processing topics, namely: speaker segmentation and speaker clustering. Speaker segmentation aims at finding speaker change points in an audio stream, whereas speaker clustering aims at grouping speech segments based on speaker characteristics. Model-based, metric-based, and hybrid speaker segmentation algorithms are reviewed. Concerning speaker clustering, deterministic and probabilistic algorithms are examined. A comparative assessment of the reviewed algorithms is undertaken, the algorithm advantages and disadvantages are indicated, insight to the algorithms is offered, and deductions as well as recommendations are given. Rich transcription and movie analysis are candidate applications that benefit from combined speaker segmentation and clustering. © 2007 Elsevier B.V. All rights reserved

    Audio segmentation-by-classification approach based on factor analysis in broadcast news domain

    Get PDF
    This paper studies a novel audio segmentation-by-classification approach based on factor analysis. The proposed technique compensates the within-class variability by using class-dependent factor loading matrices and obtains the scores by computing the log-likelihood ratio for the class model to a non-class model over fixed-length windows. Afterwards, these scores are smoothed to yield longer contiguous segments of the same class by means of different back-end systems. Unlike previous solutions, our proposal does not make use of specific acoustic features and does not need a hierarchical structure. The proposed method is applied to segment and classify audios coming from TV shows into five different acoustic classes: speech, music, speech with music, speech with noise, and others. The technique is compared to a hierarchical system with specific acoustic features achieving a significant error reduction

    Albayzín-2014 evaluation: audio segmentation and classification in broadcast news domains

    Get PDF
    The electronic version of this article is the complete one and can be found online at: http://dx.doi.org/10.1186/s13636-015-0076-3Audio segmentation is important as a pre-processing task to improve the performance of many speech technology tasks and, therefore, it has an undoubted research interest. This paper describes the database, the metric, the systems and the results for the Albayzín-2014 audio segmentation campaign. In contrast to previous evaluations where the task was the segmentation of non-overlapping classes, Albayzín-2014 evaluation proposes the delimitation of the presence of speech, music and/or noise that can be found simultaneously. The database used in the evaluation was created by fusing different media and noises in order to increase the difficulty of the task. Seven segmentation systems from four different research groups were evaluated and combined. Their experimental results were analyzed and compared with the aim of providing a benchmark and showing up the promising directions in this field.This work has been partially funded by the Spanish Government and the European Union (FEDER) under the project TIN2011-28169-C05-02 and supported by the European Regional Development Fund and the Spanish Government (‘SpeechTech4All Project’ TEC2012-38939-C03

    Multiclass audio segmentation based on recurrent neural networks for broadcast domain data

    Get PDF
    This paper presents a new approach based on recurrent neural networks (RNN) to the multiclass audio segmentation task whose goal is to classify an audio signal as speech, music, noise or a combination of these. The proposed system is based on the use of bidirectional long short-term Memory (BLSTM) networks to model temporal dependencies in the signal. The RNN is complemented by a resegmentation module, gaining long term stability by means of the tied state concept in hidden Markov models. We explore different neural architectures introducing temporal pooling layers to reduce the neural network output sampling rate. Our findings show that removing redundant temporal information is beneficial for the segmentation system showing a relative improvement close to 5%. Furthermore, this solution does not increase the number of parameters of the model and reduces the number of operations per second, allowing our system to achieve a real-time factor below 0.04 if running on CPU and below 0.03 if running on GPU. This new architecture combined with a data-agnostic data augmentation technique called mixup allows our system to achieve competitive results in both the Albayzín 2010 and 2012 evaluation datasets, presenting a relative improvement of 19.72% and 5.35% compared to the best results found in the literature for these databases

    Robust Speech Recognition for Adverse Environments

    Get PDF

    Integration of Phonotactic Features for Language Identification on Code-Switched Speech

    Get PDF
    Abstract: In this paper, phoneme sequences are used as language information to perform code-switched language identification (LID). With the one-pass recognition system, the spoken sounds are converted into phonetically arranged sequences of sounds. The acoustic models are robust enough to handle multiple languages when emulating multiple hidden Markov models (HMMs). To determine the phoneme similarity among our target languages, we reported two methods of phoneme mapping. Statistical phoneme-based bigram language models (LM) are integrated into speech decoding to eliminate possible phone mismatches. The supervised support vector machine (SVM) is used to learn to recognize the phonetic information of mixed-language speech based on recognized phone sequences. As the back-end decision is taken by an SVM, the likelihood scores of segments with monolingual phone occurrence are used to classify language identity. The speech corpus was tested on Sepedi and English languages that are often mixed. Our system is evaluated by measuring both the ASR performance and the LID performance separately. The systems have obtained a promising ASR accuracy with data-driven phone merging approach modelled using 16 Gaussian mixtures per state. In code-switched speech and monolingual speech segments respectively, the proposed systems achieved an acceptable ASR and LID accuracy

    Identification of Code-Switched Sentences and Words Using Language Modeling Approaches

    Get PDF
    Globalization and multilingualism contribute to code-switching—the phenomenon in which speakers produce utterances containing words or expressions from a second language. Processing code-switched sentences is a significant challenge for multilingual intelligent systems. This study proposes a language modeling approach to the problem of code-switching language processing, dividing the problem into two subtasks: the detection of code-switched sentences and the identification of code-switched words in sentences. A code-switched sentence is detected on the basis of whether it contains words or phrases from another language. Once the code-switched sentences are identified, the positions of the code-switched words in the sentences are then identified. Experimental results show that the language modeling approach achieved an F-measure of 80.43% and an accuracy of 79.01% for detecting Mandarin-Taiwanese code-switched sentences. For the identification of code-switched words, the word-based and POS-based models, respectively, achieved F-measures of 41.09% and 53.08%
    corecore