348 research outputs found

    CCTV Surveillance System, Attacks and Design Goals

    Get PDF
    Closed Circuit Tele-Vision surveillance systems are frequently the subject of debate. Some parties seek to promote their benefits such as their use in criminal investigations and providing a feeling of safety to the public. They have also been on the receiving end of bad press when some consider intrusiveness has outweighed the benefits. The correct design and use of such systems is paramount to ensure a CCTV surveillance system meets the needs of the user, provides a tangible benefit and provides safety and security for the wider law-abiding public. In focusing on the normative aspects of CCTV, the paper raises questions concerning the efficiency of understanding contemporary forms of ‘social ordering practices’ primarily in terms of technical rationalities while neglecting other, more material and ideological processes involved in the construction of social order. In this paper, a 360-degree view presented on the assessment of the diverse CCTV video surveillance systems (VSS) of recent past and present in accordance with technology. Further, an attempt been made to compare different VSS with their operational strengths and their attacks. Finally, the paper concludes with a number of future research directions in the design and implementation of VSS

    M-health review: joining up healthcare in a wireless world

    Get PDF
    In recent years, there has been a huge increase in the use of information and communication technologies (ICT) to deliver health and social care. This trend is bound to continue as providers (whether public or private) strive to deliver better care to more people under conditions of severe budgetary constraint

    Enabling Runtime Self-Coordination of Reconfigurable Embedded Smart Cameras in Distributed Networks

    Get PDF
    Smart camera networks are real-time distributed embedded systems able to perform computer vision using multiple cameras. This new approach is a confluence of four major disciplines (computer vision, image sensors, embedded computing and sensor networks) and has been subject of intensive work in the past decades. The recent advances in computer vision and network communication, and the rapid growing in the field of high-performance computing, especially using reconfigurable devices, have enabled the design of more robust smart camera systems. Despite these advancements, the effectiveness of current networked vision systems (compared to their operating costs) is still disappointing; the main reason being the poor coordination among cameras entities at runtime and the lack of a clear formalism to dynamically capture and address the self-organization problem without relying on human intervention. In this dissertation, we investigate the use of a declarative-based modeling approach for capturing runtime self-coordination. We combine modeling approaches borrowed from logic programming, computer vision techniques, and high-performance computing for the design of an autonomous and cooperative smart camera. We propose a compact modeling approach based on Answer Set Programming for architecture synthesis of a system-on-reconfigurable-chip camera that is able to support the runtime cooperative work and collaboration with other camera nodes in a distributed network setup. Additionally, we propose a declarative approach for modeling runtime camera self-coordination for distributed object tracking in which moving targets are handed over in a distributed manner and recovered in case of node failure

    System Abstractions for Scalable Application Development at the Edge

    Get PDF
    Recent years have witnessed an explosive growth of Internet of Things (IoT) devices, which collect or generate huge amounts of data. Given diverse device capabilities and application requirements, data processing takes place across a range of settings, from on-device to a nearby edge server/cloud and remote cloud. Consequently, edge-cloud coordination has been studied extensively from the perspectives of job placement, scheduling and joint optimization. Typical approaches focus on performance optimization for individual applications. This often requires domain knowledge of the applications, but also leads to application-specific solutions. Application development and deployment over diverse scenarios thus incur repetitive manual efforts. There are two overarching challenges to provide system-level support for application development at the edge. First, there is inherent heterogeneity at the device hardware level. The execution settings may range from a small cluster as an edge cloud to on-device inference on embedded devices, differing in hardware capability and programming environments. Further, application performance requirements vary significantly, making it even more difficult to map different applications to already heterogeneous hardware. Second, there are trends towards incorporating edge and cloud and multi-modal data. Together, these add further dimensions to the design space and increase the complexity significantly. In this thesis, we propose a novel framework to simplify application development and deployment over a continuum of edge to cloud. Our framework provides key connections between different dimensions of design considerations, corresponding to the application abstraction, data abstraction and resource management abstraction respectively. First, our framework masks hardware heterogeneity with abstract resource types through containerization, and abstracts away the application processing pipelines into generic flow graphs. Further, our framework further supports a notion of degradable computing for application scenarios at the edge that are driven by multimodal sensory input. Next, as video analytics is the killer app of edge computing, we include a generic data management service between video query systems and a video store to organize video data at the edge. We propose a video data unit abstraction based on a notion of distance between objects in the video, quantifying the semantic similarity among video data. Last, considering concurrent application execution, our framework supports multi-application offloading with device-centric control, with a userspace scheduler service that wraps over the operating system scheduler

    Big data analytics:Computational intelligence techniques and application areas

    Get PDF
    Big Data has significant impact in developing functional smart cities and supporting modern societies. In this paper, we investigate the importance of Big Data in modern life and economy, and discuss challenges arising from Big Data utilization. Different computational intelligence techniques have been considered as tools for Big Data analytics. We also explore the powerful combination of Big Data and Computational Intelligence (CI) and identify a number of areas, where novel applications in real world smart city problems can be developed by utilizing these powerful tools and techniques. We present a case study for intelligent transportation in the context of a smart city, and a novel data modelling methodology based on a biologically inspired universal generative modelling approach called Hierarchical Spatial-Temporal State Machine (HSTSM). We further discuss various implications of policy, protection, valuation and commercialization related to Big Data, its applications and deployment

    Performance modelling and optimization for video-analytic algorithms in a cloud-like environment using machine learning

    Get PDF
    CCTV cameras produce a large amount of video surveillance data per day, and analysing them require the use of significant computing resources that often need to be scalable. The emergence of the Hadoop distributed processing framework has had a significant impact on various data intensive applications as the distributed computed based processing enables an increase of the processing capability of applications it serves. Hadoop is an open source implementation of the MapReduce programming model. It automates the operation of creating tasks for each function, distribute data, parallelize executions and handles machine failures that reliefs users from the complexity of having to manage the underlying processing and only focus on building their application. It is noted that in a practical deployment the challenge of Hadoop based architecture is that it requires several scalable machines for effective processing, which in turn adds hardware investment cost to the infrastructure. Although using a cloud infrastructure offers scalable and elastic utilization of resources where users can scale up or scale down the number of Virtual Machines (VM) upon requirements, a user such as a CCTV system operator intending to use a public cloud would aspire to know what cloud resources (i.e. number of VMs) need to be deployed so that the processing can be done in the fastest (or within a known time constraint) and the most cost effective manner. Often such resources will also have to satisfy practical, procedural and legal requirements. The capability to model a distributed processing architecture where the resource requirements can be effectively and optimally predicted will thus be a useful tool, if available. In literature there is no clear and comprehensive modelling framework that provides proactive resource allocation mechanisms to satisfy a user's target requirements, especially for a processing intensive application such as video analytic. In this thesis, with the hope of closing the above research gap, novel research is first initiated by understanding the current legal practices and requirements of implementing video surveillance system within a distributed processing and data storage environment, since the legal validity of data gathered or processed within such a system is vital for a distributed system's applicability in such domains. Subsequently the thesis presents a comprehensive framework for the performance ii modelling and optimization of resource allocation in deploying a scalable distributed video analytic application in a Hadoop based framework, running on virtualized cluster of machines. The proposed modelling framework investigates the use of several machine learning algorithms such as, decision trees (M5P, RepTree), Linear Regression, Multi Layer Perceptron(MLP) and the Ensemble Classifier Bagging model, to model and predict the execution time of video analytic jobs, based on infrastructure level as well as job level parameters. Further in order to propose a novel framework for the allocate resources under constraints to obtain optimal performance in terms of job execution time, we propose a Genetic Algorithms (GAs) based optimization technique. Experimental results are provided to demonstrate the proposed framework's capability to successfully predict the job execution time of a given video analytic task based on infrastructure and input data related parameters and its ability determine the minimum job execution time, given constraints of these parameters. Given the above, the thesis contributes to the state-of-art in distributed video analytics, design, implementation, performance analysis and optimisation

    Simulation-based optimization for the placement of surveillance cameras in buildings using BIM

    Get PDF
    Many companies and organizations highlighted the importance of developing various security monitoring systems for the purpose of protecting their assets against any undesirable events. The process of installing surveillance cameras inside buildings is complex and costly. One of the most important issues that can affect the cost of surveillance cameras in buildings is finding the best placement of cameras. Individuals who are responsible for the camera installation are facing great challenges due to the large number of variables related to this problem. Finding effective scientific methods to address this problem can lead to increasing the efficiency of the camera placement through maximizing the coverage and minimizing the cost. Furthermore, available methods did not take into consideration the impact of different elements (e.g. the HVAC system) that can affect the camera placement. Building Information Modeling (BIM) is becoming an indispensable process for the Architecture, Engineering and Construction (AEC) industry. In terms of security management, BIM technology can improve the performance of security systems during the design phase because of its ability to identify various elements that surround the 3D surveillance cameras in the form of geometrical and non-geometrical entities. iv The objectives of this research are: (1) to develop a method that can help in calculating the coverage of surveillance cameras inside buildings; (2) to investigate the impact of the building elements on the camera configurations, parameters and coverage using BIM; (3) to develop a method that can find the near-optimum types, number and placement of fixed cameras inside a building; and (4) to develop a method that can find the near-optimum placement and movement plan of a Pan-Tilt-Zoom (PTZ) camera inside a building. A method is developed to calculate the camera coverage inside buildings using BIM and a game engine for the purpose of automating the calculation process and achieving accurate results. This method includes a sensitivity analysis for evaluating the suitable cell size in order to cover the monitored area. Also, the research proposes a novel method using BIM, which provides a new opportunity to better optimize the number and locations of cameras by exploiting the rich information available in the model. The near-optimum results aim to maximize the cameras’ coverages and to minimize their costs. BIM is used to define the input of the optimization process and to visualize the results. The method uses Genetic Algorithm (GA) to solve the optimization problem. Finally, the research addresses the placement problem for a PTZ camera. PTZ cameras are used as an addition to fixed cameras in order to ensure the detection of dynamic activities. The research extends the previous method to optimize the placement and movement plan of a PTZ camera inside a building. Several case studies are used to demonstrate the applicability of the proposed methods. The proposed methods can help individuals who are responsible of the camera installation to efficiently determin

    Enabling Artificial Intelligence Analytics on The Edge

    Get PDF
    This thesis introduces a novel distributed model for handling in real-time, edge-based video analytics. The novelty of the model relies on decoupling and distributing the services into several decomposed functions, creating virtual function chains (V F C model). The model considers both computational and communication constraints. Theoretical, simulation and experimental results have shown that the V F C model can enable the support of heavy-load services to an edge environment while improving the footprint of the service compared to state-of-the art frameworks. In detail, results on the V F C model have shown that it can reduce the total edge cost, compared with a monolithic and a simple frame distribution models. For experimenting on a real-case scenario, a testbed edge environment has been developed, where the aforementioned models, as well as a general distribution framework (Apache Spark ©), have been deployed. A cloud service has also been considered. Experiments have shown that V F C can outperform all alternative approaches, by reducing operational cost and improving the QoS. Finally, a migration model, a caching model and a QoS monitoring service based on Long-Term-Short-Term models are introduced

    Dynamic Reconfiguration in Camera Networks: A Short Survey

    Get PDF
    There is a clear trend in camera networks towards enhanced functionality and flexibility, and a fixed static deployment is typically not sufficient to fulfill these increased requirements. Dynamic network reconfiguration helps to optimize the network performance to the currently required specific tasks while considering the available resources. Although several reconfiguration methods have been recently proposed, e.g., for maximizing the global scene coverage or maximizing the image quality of specific targets, there is a lack of a general framework highlighting the key components shared by all these systems. In this paper we propose a reference framework for network reconfiguration and present a short survey of some of the most relevant state-of-the-art works in this field, showing how they can be reformulated in our framework. Finally we discuss the main open research challenges in camera network reconfiguration
    • …
    corecore