10,410 research outputs found

    An Adaptive Semi-Parametric and Context-Based Approach to Unsupervised Change Detection in Multitemporal Remote-Sensing Images

    Get PDF
    In this paper, a novel automatic approach to the unsupervised identification of changes in multitemporal remote-sensing images is proposed. This approach, unlike classical ones, is based on the formulation of the unsupervised change-detection problem in terms of the Bayesian decision theory. In this context, an adaptive semi-parametric technique for the unsupervised estimation of the statistical terms associated with the gray levels of changed and unchanged pixels in a difference image is presented. Such a technique exploits the effectivenesses of two theoretically well-founded estimation procedures: the reduced Parzen estimate (RPE) procedure and the expectation-maximization (EM) algorithm. Then, thanks to the resulting estimates and to a Markov Random Field (MRF) approach used to model the spatial-contextual information contained in the multitemporal images considered, a change detection map is generated. The adaptive semi-parametric nature of the proposed technique allows its application to different kinds of remote-sensing images. Experimental results, obtained on two sets of multitemporal remote-sensing images acquired by two different sensors, confirm the validity of the proposed approach

    ClusterNet: Detecting Small Objects in Large Scenes by Exploiting Spatio-Temporal Information

    Full text link
    Object detection in wide area motion imagery (WAMI) has drawn the attention of the computer vision research community for a number of years. WAMI proposes a number of unique challenges including extremely small object sizes, both sparse and densely-packed objects, and extremely large search spaces (large video frames). Nearly all state-of-the-art methods in WAMI object detection report that appearance-based classifiers fail in this challenging data and instead rely almost entirely on motion information in the form of background subtraction or frame-differencing. In this work, we experimentally verify the failure of appearance-based classifiers in WAMI, such as Faster R-CNN and a heatmap-based fully convolutional neural network (CNN), and propose a novel two-stage spatio-temporal CNN which effectively and efficiently combines both appearance and motion information to significantly surpass the state-of-the-art in WAMI object detection. To reduce the large search space, the first stage (ClusterNet) takes in a set of extremely large video frames, combines the motion and appearance information within the convolutional architecture, and proposes regions of objects of interest (ROOBI). These ROOBI can contain from one to clusters of several hundred objects due to the large video frame size and varying object density in WAMI. The second stage (FoveaNet) then estimates the centroid location of all objects in that given ROOBI simultaneously via heatmap estimation. The proposed method exceeds state-of-the-art results on the WPAFB 2009 dataset by 5-16% for moving objects and nearly 50% for stopped objects, as well as being the first proposed method in wide area motion imagery to detect completely stationary objects.Comment: Main paper is 8 pages. Supplemental section contains a walk-through of our method (using a qualitative example) and qualitative results for WPAFB 2009 datase

    Identification and Classification of Moving Vehicles on Road

    Get PDF
    It is important to know the road traffic density real time especially in cities for signal control and effective traffic management. In recent years, video monitoring and surveillance systems have been widely used in traffic management. Hence, traffic density estimation and vehicle classification can be achieved using video monitoring systems. The image sequences for traffic scenes are recorded by a stationary camera. The method is based on the establishment of correspondences between regions and vehicles, as the vehicles move through the image sequence. Background subtraction is used which improves the adaptive background mixture model and makes the system learn faster and more accurately, as well as adapt effectively to changing environments. The resulting system robustly identifies vehicles, rejecting background and tracks vehicles over a specific period of time. Once the (object) vehicle is tracked, the attributes of the vehicle like width, length, perimeter, area etc are extracted by image process feature extraction techniques. These features will be used in classification of vehicle as big or small using neural networks classification technique of data mining. In proposed system we use LABVIEW and Vision assistant module for image processing and feature extraction.  A feed-forward neural network is trained to classify vehicles using data mining WEKA toolbox. The system will solve major problems of human effort and errors in traffic monitoring and time consumption in conducting survey and analysis of data. The project will benefit to reduce cost of traffic monitoring system and complete automation of traffic monitoring system. Keywords: Image processing, Feature extraction, Segmentation, Threshold, Filter, Morphology, Blob, LABVIEW, NI, VI, Vision assistant, Data mining, Machine learning, Neural network, Back propagation, Multi layer perception, Classification, WEK

    Conteo de vehículos a partir de vídeos usando machine learning

    Get PDF
    This work presents a framework for vehicle counting from videos, using deep neural networks as detectors. The framework has 4 stages: preprocessing, detection and classification, tracking, and post-processing. For the detection stage, several deep object detector are compared and 3 new ones are proposed based on Tiny YOLOv3. For the tracking, a new tracker based on IOU is compared against the classic ones: Boosting, KCF, TLD, Mediaflow, MOSSE and CSRT. The comparison is based on 8 multi-object tracking metrics over the Bog19 dataset. The Bog19 dataset is a collection of annotated videos from the city of Bogota. The annotations include bicycles, buses, cars, motorbikes and trucks. Finally, the system is evaluated for the task of vehicle counting on this dataset. For the counting task, the combinations of the proposed detectors with the Medianflow and MOSSE trackers obtain the best results. The founded detectors have the same performance as those of the state of the art but with a higher speed.Este trabajo presenta un framework para el conteo de vehı́culos a partir de videos, utilizando redes neuronales profundas como detectores. El framework tiene 4 etapas: preprocesamiento, detección y clasificación, seguimiento y post-procesamiento. Para la etapa de detección se comparan varios detectores de objetos profundos y se proponen 3 nuevos basados en Tiny YOLOv3. Para el rastreo, se compara un nuevo rastreador basado en IOU con los clásicos: Boosting, KCF, TLD, Mediaflow, MOSSE y CSRT. La comparación se hace en base a 8 métricas de seguimiento multiobjeto sobre el conjunto de datos del Bog19. El conjunto de datos Bog19 es una colección de videos anotados de la ciudad de Bogotá. Las clases de objetos anotados incluyen bicicletas, autobuses, coches, motos y camiones. Finalmente el sistema es evaluado para la tarea de contar vehı́culos en este conjunto de datos. Para la tarea de conteo, las combinaciones de los detectores propuestos y los rastreadores Medianflow y MOSSE obtienen los mejores resultados. Los detectores encontrados tienen el mismo desempeño que los del estado del arte pero con una mayor velocidad.Magíster en Ingeniería - Ingeniería de Sistemas y ComputaciónMaestrí

    Robust Modular Feature-Based Terrain-Aided Visual Navigation and Mapping

    Get PDF
    The visual feature-based Terrain-Aided Navigation (TAN) system presented in this thesis addresses the problem of constraining inertial drift introduced into the location estimate of Unmanned Aerial Vehicles (UAVs) in GPS-denied environment. The presented TAN system utilises salient visual features representing semantic or human-interpretable objects (roads, forest and water boundaries) from onboard aerial imagery and associates them to a database of reference features created a-priori, through application of the same feature detection algorithms to satellite imagery. Correlation of the detected features with the reference features via a series of the robust data association steps allows a localisation solution to be achieved with a finite absolute bound precision defined by the certainty of the reference dataset. The feature-based Visual Navigation System (VNS) presented in this thesis was originally developed for a navigation application using simulated multi-year satellite image datasets. The extension of the system application into the mapping domain, in turn, has been based on the real (not simulated) flight data and imagery. In the mapping study the full potential of the system, being a versatile tool for enhancing the accuracy of the information derived from the aerial imagery has been demonstrated. Not only have the visual features, such as road networks, shorelines and water bodies, been used to obtain a position ’fix’, they have also been used in reverse for accurate mapping of vehicles detected on the roads into an inertial space with improved precision. Combined correction of the geo-coding errors and improved aircraft localisation formed a robust solution to the defense mapping application. A system of the proposed design will provide a complete independent navigation solution to an autonomous UAV and additionally give it object tracking capability

    Advanced traffic video analytics for robust traffic accident detection

    Get PDF
    Automatic traffic accident detection is an important task in traffic video analysis due to its key applications in developing intelligent transportation systems. Reducing the time delay between the occurrence of an accident and the dispatch of the first responders to the scene may help lower the mortality rate and save lives. Since 1980, many approaches have been presented for the automatic detection of incidents in traffic videos. In this dissertation, some challenging problems for accident detection in traffic videos are discussed and a new framework is presented in order to automatically detect single-vehicle and intersection traffic accidents in real-time. First, a new foreground detection method is applied in order to detect the moving vehicles and subtract the ever-changing background in the traffic video frames captured by static or non-stationary cameras. For the traffic videos captured during day-time, the cast shadows degrade the performance of the foreground detection and road segmentation. A novel cast shadow detection method is therefore presented to detect and remove the shadows cast by moving vehicles and also the shadows cast by static objects on the road. Second, a new method is presented to detect the region of interest (ROI), which applies the location of the moving vehicles and the initial road samples and extracts the discriminating features to segment the road region. After detecting the ROI, the moving direction of the traffic is estimated based on the rationale that the crashed vehicles often make rapid change of direction. Lastly, single-vehicle traffic accidents and trajectory conflicts are detected using the first-order logic decision-making system. The experimental results using publicly available videos and a dataset provided by the New Jersey Department of Transportation (NJDOT) demonstrate the feasibility of the proposed methods. Additionally, the main challenges and future directions are discussed regarding (i) improving the performance of the foreground segmentation, (ii) reducing the computational complexity, and (iii) detecting other types of traffic accidents
    corecore