1,156 research outputs found

    Automatic rigging and animation of 3D characters

    Get PDF
    Animating an articulated 3D character currently requires manual rigging to specify its internal skeletal structure and to define how the input motion deforms its surface. We present a method for animating characters automatically. Given a static character mesh and a generic skeleton, our method adapts the skeleton to the character and attaches it to the surface, allowing skeletal motion data to animate the character. Because a single skeleton can be used with a wide range of characters, our method, in conjunction with a library of motions for a few skeletons, enables a user-friendly animation system for novices and children. Our prototype implementation, called Pinocchio, typically takes under a minute to rig a character on a modern midrange PC.Solidworks CorporationNational Science Foundation (U.S.). Graduate Research Fellowshi

    A survey of real-time crowd rendering

    Get PDF
    In this survey we review, classify and compare existing approaches for real-time crowd rendering. We first overview character animation techniques, as they are highly tied to crowd rendering performance, and then we analyze the state of the art in crowd rendering. We discuss different representations for level-of-detail (LoD) rendering of animated characters, including polygon-based, point-based, and image-based techniques, and review different criteria for runtime LoD selection. Besides LoD approaches, we review classic acceleration schemes, such as frustum culling and occlusion culling, and describe how they can be adapted to handle crowds of animated characters. We also discuss specific acceleration techniques for crowd rendering, such as primitive pseudo-instancing, palette skinning, and dynamic key-pose caching, which benefit from current graphics hardware. We also address other factors affecting performance and realism of crowds such as lighting, shadowing, clothing and variability. Finally we provide an exhaustive comparison of the most relevant approaches in the field.Peer ReviewedPostprint (author's final draft

    Embedded Implicit Stand-ins for Animated Meshes: a Case of Hybrid Modelling

    Get PDF
    In this paper we address shape modelling problems, encountered in computer animation and computer games development that are difficult to solve just using polygonal meshes. Our approach is based on a hybrid modelling concept that combines polygonal meshes with implicit surfaces. A hybrid model consists of an animated polygonal mesh and an approximation of this mesh by a convolution surface stand-in that is embedded within it or is attached to it. The motions of both objects are synchronised using a rigging skeleton. This approach is used to model the interaction between an animated mesh object and a viscoelastic substance, normally modelled in implicit form. The adhesive behaviour of the viscous object is modelled using geometric blending operations on the corresponding implicit surfaces. Another application of this approach is the creation of metamorphosing implicit surface parts that are attached to an animated mesh. A prototype implementation of the proposed approach and several examples of modelling and animation with near real-time preview times are presented

    Sketching-out virtual humans: From 2d storyboarding to immediate 3d character animation

    Get PDF
    Virtual beings are playing a remarkable role in today’s public entertainment, while ordinary users are still treated as audiences due to the lack of appropriate expertise, equipment, and computer skills. In this paper, we present a fast and intuitive storyboarding interface, which enables users to sketch-out 3D virtual humans, 2D/3D animations, and character intercommunication. We devised an intuitive “stick figurefleshing-outskin mapping” graphical animation pipeline, which realises the whole process of key framing, 3D pose reconstruction, virtual human modelling, motion path/timing control, and the final animation synthesis by almost pure 2D sketching. A “creative model-based method” is developed, which emulates a human perception process, to generate the 3D human bodies of variational sizes, shapes, and fat distributions. Meanwhile, our current system also supports the sketch-based crowd animation and the storyboarding of the 3D multiple character intercommunication. This system has been formally tested by various users on Tablet PC. After minimal training, even a beginner can create vivid virtual humans and animate them within minutes

    Artimate: an articulatory animation framework for audiovisual speech synthesis

    Get PDF
    We present a modular framework for articulatory animation synthesis using speech motion capture data obtained with electromagnetic articulography (EMA). Adapting a skeletal animation approach, the articulatory motion data is applied to a three-dimensional (3D) model of the vocal tract, creating a portable resource that can be integrated in an audiovisual (AV) speech synthesis platform to provide realistic animation of the tongue and teeth for a virtual character. The framework also provides an interface to articulatory animation synthesis, as well as an example application to illustrate its use with a 3D game engine. We rely on cross-platform, open-source software and open standards to provide a lightweight, accessible, and portable workflow.Comment: Workshop on Innovation and Applications in Speech Technology (2012

    Automatic generation of dynamic skin deformation for animated characters

    Get PDF
    © 2018 by the authors. Since non-automatic rigging requires heavy human involvements, and various automatic rigging algorithms are less efficient in terms of computational efficiency, especially for current curve-based skin deformation methods, identifying the iso-parametric curves and creating the animation skeleton requires tedious and time-consuming manual work. Although several automatic rigging methods have been developed, but they do not aim at curve-based models. To tackle this issue, this paper proposes a new rigging algorithm for automatic generation of dynamic skin deformation to quickly identify iso-parametric curves and create an animation skeleton in a few milliseconds, which can be seamlessly used in curve-based skin deformation methods to make the rigging process fast enough for highly efficient computer animation applications

    Analysis of Design Principles and Requirements for Procedural Rigging of Bipeds and Quadrupeds Characters with Custom Manipulators for Animation

    Full text link
    Character rigging is a process of endowing a character with a set of custom manipulators and controls making it easy to animate by the animators. These controls consist of simple joints, handles, or even separate character selection windows.This research paper present an automated rigging system for quadruped characters with custom controls and manipulators for animation.The full character rigging mechanism is procedurally driven based on various principles and requirements used by the riggers and animators. The automation is achieved initially by creating widgets according to the character type. These widgets then can be customized by the rigger according to the character shape, height and proportion. Then joint locations for each body parts are calculated and widgets are replaced programmatically.Finally a complete and fully operational procedurally generated character control rig is created and attached with the underlying skeletal joints. The functionality and feasibility of the rig was analyzed from various source of actual character motion and a requirements criterion was met. The final rigged character provides an efficient and easy to manipulate control rig with no lagging and at high frame rate.Comment: 21 pages, 24 figures, 4 Algorithms, Journal Pape
    corecore