22,965 research outputs found

    Resource Management in Distributed Camera Systems

    Get PDF
    The aim of this work is to investigate different methods to solve the problem of allocating the correct amount of resources (network bandwidth and storage space) to video camera systems. Here we explore the intersection between two research areas: automatic control and game theory. Camera systems are a good example of the emergence of the Internet of Things (IoT) and its impact on our daily lives and the environment. We aim to improve today’s systems, shift from resources over-provisioning to allocate dynamically resources where they are needed the most. We optimize the storage and bandwidth allocation of camera systems to limit the impact on the environment as well as provide the best visual quality attainable with the resource limitations. This thesis is written as a collection of papers. It begins by introducing the problem with today’s camera systems, and continues with background information about resource allocation, automatic control and game theory. The third chapter de- scribes the models of the considered systems, their limitations and challenges. It then continues by providing more background on the automatic control and game theory techniques used in the proposed solutions. Finally, the proposed solutions are provided in five papers.Paper I proposes an approach to estimate the amount of data needed by surveillance cameras given camera and scenario parameters. This model is used for calculating the quasi Worst-Case Transmission Times of videos over a network. Papers II and III apply control concepts to camera network storage and bandwidth assignment. They provide simple, yet elegant solutions to the allocation of these resources in distributed camera systems. Paper IV com- bines pricing theory with control techniques to force the video quality of cam- era systems to converge to a common value based solely on the compression parameter of the provided videos. Paper V uses the VCG auction mechanism to solve the storage space allocation problem in competitive camera systems. It allows for a better system-wide visual quality than a simple split allocation given the limited system knowledge, trust and resource constraints

    Communication-efficient Distributed Multi-resource Allocation

    Full text link
    In several smart city applications, multiple resources must be allocated among competing agents that are coupled through such shared resources and are constrained --- either through limitations of communication infrastructure or privacy considerations. We propose a distributed algorithm to solve such distributed multi-resource allocation problems with no direct inter-agent communication. We do so by extending a recently introduced additive-increase multiplicative-decrease (AIMD) algorithm, which only uses very little communication between the system and agents. Namely, a control unit broadcasts a one-bit signal to agents whenever one of the allocated resources exceeds capacity. Agents then respond to this signal in a probabilistic manner. In the proposed algorithm, each agent makes decision of its resource demand locally and an agent is unaware of the resource allocation of other agents. In empirical results, we observe that the average allocations converge over time to optimal allocations.Comment: To appear in IEEE International Smart Cities Conference (ISC2 2018), Kansas City, USA, September, 2018. arXiv admin note: substantial text overlap with arXiv:1711.0197

    A Study to Optimize Heterogeneous Resources for Open IoT

    Full text link
    Recently, IoT technologies have been progressed, and many sensors and actuators are connected to networks. Previously, IoT services were developed by vertical integration style. But now Open IoT concept has attracted attentions which achieves various IoT services by integrating horizontal separated devices and services. For Open IoT era, we have proposed the Tacit Computing technology to discover the devices with necessary data for users on demand and use them dynamically. We also implemented elemental technologies of Tacit Computing. In this paper, we propose three layers optimizations to reduce operation cost and improve performance of Tacit computing service, in order to make as a continuous service of discovered devices by Tacit Computing. In optimization process, appropriate function allocation or offloading specific functions are calculated on device, network and cloud layer before full-scale operation.Comment: 3 pages, 1 figure, 2017 Fifth International Symposium on Computing and Networking (CANDAR2017), Nov. 201

    Towards delay-aware container-based Service Function Chaining in Fog Computing

    Get PDF
    Recently, the fifth-generation mobile network (5G) is getting significant attention. Empowered by Network Function Virtualization (NFV), 5G networks aim to support diverse services coming from different business verticals (e.g. Smart Cities, Automotive, etc). To fully leverage on NFV, services must be connected in a specific order forming a Service Function Chain (SFC). SFCs allow mobile operators to benefit from the high flexibility and low operational costs introduced by network softwarization. Additionally, Cloud computing is evolving towards a distributed paradigm called Fog Computing, which aims to provide a distributed cloud infrastructure by placing computational resources close to end-users. However, most SFC research only focuses on Multi-access Edge Computing (MEC) use cases where mobile operators aim to deploy services close to end-users. Bi-directional communication between Edges and Cloud are not considered in MEC, which in contrast is highly important in a Fog environment as in distributed anomaly detection services. Therefore, in this paper, we propose an SFC controller to optimize the placement of service chains in Fog environments, specifically tailored for Smart City use cases. Our approach has been validated on the Kubernetes platform, an open-source orchestrator for the automatic deployment of micro-services. Our SFC controller has been implemented as an extension to the scheduling features available in Kubernetes, enabling the efficient provisioning of container-based SFCs while optimizing resource allocation and reducing the end-to-end (E2E) latency. Results show that the proposed approach can lower the network latency up to 18% for the studied use case while conserving bandwidth when compared to the default scheduling mechanism

    Mobile, collaborative augmented reality using cloudlets

    Get PDF
    The evolution in mobile applications to support advanced interactivity and demanding multimedia features is still ongoing. Novel application concepts (e.g. mobile Augmented Reality (AR)) are however hindered by the inherently limited resources available on mobile platforms (not withstanding the dramatic performance increases of mobile hardware). Offloading resource intensive application components to the cloud, also known as "cyber foraging", has proven to be a valuable solution in a variety of scenarios. However, also for collaborative scenarios, in which data together with its processing are shared between multiple users, this offloading concept is highly promising. In this paper, we investigate the challenges posed by offloading collaborative mobile applications. We present a middleware platform capable of autonomously deploying software components to minimize average CPU load, while guaranteeing smooth collaboration. As a use case, we present and evaluate a collaborative AR application, offering interaction between users, the physical environment as well as with the virtual objects superimposed on this physical environment
    corecore