1,139 research outputs found

    Topological model for machining of parts with complex shapes

    Get PDF
    Complex shapes are widely used to design products in several industries such as aeronautics, automotive and domestic appliances. Several variations of their curvatures and orientations generate difficulties during their manufacturing or the machining of dies used in moulding, injection and forging. Analysis of several parts highlights two levels of difficulties between three types of shapes: prismatic parts with simple geometrical shapes, aeronautic structure parts composed of several shallow pockets and forging dies composed of several deep cavities which often contain protrusions. This paper mainly concerns High Speed Machining (HSM) of these dies which represent the highest complexity level because of the shapes' geometry and their topology. Five axes HSM is generally required for such complex shaped parts but 3 axes machining can be sufficient for dies. Evolutions in HSM CAM software and machine tools lead to an important increase in time for machining preparation. Analysis stages of the CAD model particularly induce this time increase which is required for a wise choice of cutting tools and machining strategies. Assistance modules for prismatic parts machining features identification in CAD models are widely implemented in CAM software. In spite of the last CAM evolutions, these kinds of CAM modules are undeveloped for aeronautical structure parts and forging dies. Development of new CAM modules for the extraction of relevant machining areas as well as the definition of the topological relations between these areas must make it possible for the machining assistant to reduce the machining preparation time. In this paper, a model developed for the description of complex shape parts topology is presented. It is based on machining areas extracted for the construction of geometrical features starting from CAD models of the parts. As topology is described in order to assist machining assistant during machining process generation, the difficulties associated with tasks he carried out are analyzed at first. The topological model presented after is based on the basic geometrical features extracted. Topological relations which represent the framework of the model are defined between the basic geometrical features which are gathered afterwards in macro-features. Approach used for the identification of these macro-features is also presented in this paper. Detailed application on the construction of the topological model of forging dies is presented in the last part of the paper

    Freeform User Interfaces for Graphical Computing

    Get PDF
    報告番号: 甲15222 ; 学位授与年月日: 2000-03-29 ; 学位の種別: 課程博士 ; 学位の種類: 博士(工学) ; 学位記番号: 博工第4717号 ; 研究科・専攻: 工学系研究科情報工学専

    A multi-perspective dynamic feature concept in adaptive NC machining of complex freeform surfaces

    Get PDF
    This paper presents a new concept of feature for freeform surface machining that defines the changes in feature status during real manufacturing situations which have not been sufficiently addressed by current international standards and previous research in feature technology. These changes are multi-perspective, including (i) changes in depth-of-cut: the geometry of a feature in the depth-of-cut direction changes during different machining operations such as roughing, semi-finishing and finishing; (ii) changes across the surface: a surface may be divided into different machining regions (effectively sub-features) for the selection of appropriate manufacturing methods for each region such as different cutting tools, parameters, set-ups or machine tools; and (iii) changes in resources or manufacturing capabilities may require the re-planning of depth-of-cuts, division of machining regions and manufacturing operations (machines, tools, set-ups and parameters). Adding the above dynamic information to the part information models in current CAD systems (which only represent the final state of parts) would significantly improve the accuracy, efficiency and timeliness of manufacturing planning and optimisation, especially for the integrated NC machining planning for complex freeform surfaces. A case study in an aircraft manufacturing company will be included in this paper

    From computer-aided to intelligent machining: Recent advances in computer numerical control machining research

    Get PDF
    The aim of this paper is to provide an introduction and overview of recent advances in the key technologies and the supporting computerized systems, and to indicate the trend of research and development in the area of computational numerical control machining. Three main themes of recent research in CNC machining are simulation, optimization and automation, which form the key aspects of intelligent manufacturing in the digital and knowledge based manufacturing era. As the information and knowledge carrier, feature is the efficacious way to achieve intelligent manufacturing. From the regular shaped feature to freeform surface feature, the feature technology has been used in manufacturing of complex parts, such as aircraft structural parts. The authors’ latest research in intelligent machining is presented through a new concept of multi-perspective dynamic feature (MpDF), for future discussion and communication with readers of this special issue. The MpDF concept has been implemented and tested in real examples from the aerospace industry, and has the potential to make promising impact on the future research in the new paradigm of intelligent machining. The authors of this paper are the guest editors of this special issue on computational numerical control machining. The guest editors have extensive and complementary experiences in both academia and industry, gained in China, USA and UK

    Development Of Generative Computer-Aided Process Planning For Cnc Milling Parts_Pramodkumar S Kataraki

    Get PDF
    The important aspect of computer-aided process planning (CAPP) is to recognize part’s surfaces and features to aid downstream intelligent manufacturing. The automatic recognition of surfaces and features will lead to successful attainment of generative CAPP. Feature recognition works performed so far do not recognize all regular form and freeform volumetric features, and do not generate delta volume (DV) for the recognized features. The works do not address the classification of freeform volumetric features. So there is a need for novel classification of features and approach to auto-recognize features so as to auto-generate DV for each recognized feature for the attainment of generative CAPP. An effort has been made to novel classify the features into regular form and freeform features which are further sub-classified into surface features and volumetric features. The overall delta volume (ODV) is classified into SDVF, SDVT, SDVF filled region, SDV-VF, and SDVR. Algorithm is developed to auto-recognize surfaces of a milling part and auto-generate ODV. The algorithm auto-generates exploded view of ODV, auto-labels the sub-delta volumes (SDVs) and determines the level of complexity to manufacture a part. The generated ODV is validated by percentage error (%) and machining of parts. The algorithm selects the type of machining operation to be performed and auto-allocates each SDV-VF to the face it belongs to. The surface and volumetric features of a part are successfully auto-recognized and estimated DV, results table are auto-generated. The SDVT developed contiguous to SDVF for freeform faces, overcomes the complex DV for roughing process. The DV discontinuity and overlap limitation that occurred in few studies are eliminated. The designation of feature faces and colour coding of faces of SDV-VF expresses the type of feature present in a part. The validation of developed algorithm by percentage error (%) shows error less than 0.1% and the machine selection criteria suggests user the type of milling machine needed to manufacture a part based on level of complexity

    An analytical cost estimation approach for generic sheet metal 3D models

    Get PDF
    This paper defines a systematic workflow for production cost estimation of sheet metal stamped components. The approach represents a solution toward the adoption of Design to Cost methods during early product design. It consists in a sequence of steps that, starting from a 3D CAD model with annotations (material, roughness and tolerances) and production information (batch and production volume) leads to the manufacturing cost through an analytic cost breakdown (raw material, stamping and accessory processes, setup and tooling). The calculation process mainly consists in a first step where geometric algorithms calculate the sheet metal blank (dimensions, shape, thickness) and specific product features (e.g. flanges, louvers, embossing, etc.). The following steps allow to calculate the raw material, the stamping process and the process-related parameters, which are the manufacturing cost drivers (e.g. press, stamping rate/sequence/force and die dimensions/weight). The manufacturing cost is the sum of the previous calculated items. Testing the approach for three different components, the average absolute deviation measured between the estimated and actual cost was less than 10% and such a result looks promising for adopting this method for evaluating alternative design solutions

    Development of Feature Recognition Algorithm for Automated Identification of Duplicate Geometries in CAD Models

    Get PDF
    This research presents a feature recognition algorithm for the automated identification of duplicate geometries in the CAD assembly. The duplicate geometry is one of the seven indicators of the lazy parts mass reduction method. The lazy parts method is a light weight engineering method that is used for analyzing parts with the mass reduction potential. The duplicate geometry is defined as any geometries lying equal to or within the threshold distance with the user-defined orientation between them and have the percentage similarity that is equal to or greater than the threshold value. The feature recognition system developed in this research for the identification of duplicate geometries is also extended to retrieve the weighted bipartite graph of part connections for the assembly time estimation. The weighted bipartite graph is used as input for the part connectivity based assembly time estimation method. The SolidWorks API software development kit is used in this research to develop a feature recognition system in SolidWorks CAD software package using C++ programming language. The feature recognition system built in the SolidWorks CAD software uses a combination of topology and geometric data for the evaluation of duplicate geometry. The measurement of distances between the sampling points strategy is used for the duplicate geometry feature recognition. The feature recognition algorithm has three phases of evaluation: first, is the evaluation for threshold distance condition of parts in the CAD assembly. Second, the part pairs that have satisfied the threshold distance condition are evaluated for the orientation condition. The threshold distance and orientation are the necessary but not the sufficient conditions for duplicate geometries. In the third phase, the geometries that have satisfied orientation condition are evaluated for the percentage similarity condition. The geometries that satisfy the percentage similarity condition are highlighted in order to help designers review the results of the duplicate geometry analysis. The test cases are used to validate the algorithm against the requirements list. The test cases are designed to check the performance of the algorithm for the evaluation of the threshold distance, orientation, and percentage similarity condition. The results indicate that the duplicate geometry algorithm is able to successfully conduct all the three phases of evaluation. The algorithm is independent of the geometric type and is able to analyze planar, cylindrical, conical, spherical, freeform, and toroidal shapes. The number of sampling points generated on the faces of parts for the orientation and percentage similarity evaluation has the significant effect on the analysis time. The worst case complexity of the algorithm is the big O (nC2x m12 x m22x p4), where n = the number of parts in the assembly m1 = the number of faces in the parts that meet the threshold distance condition m2 = the number of faces that meet the orientation condition p = the number of sampling points on the face The duplicate geometry feature recognition approach is used to demonstrate the applicability in the extraction of assembly relations for the part connectivity based assembly time estimation method. The algorithm is also able to extract part connectivity information for the patterns. Further research is required to automate the identification of other laziness indicators in order to make the lazy parts method a completely automated tool. With regards to the complete automation of part connectivity based assembly time estimation method, the duplicate geometry feature recognition system needs integration with the algorithm for the computation of bipartite graph of part connections for the prediction of assembly time
    corecore