1,630 research outputs found

    A Survey on Compiler Autotuning using Machine Learning

    Full text link
    Since the mid-1990s, researchers have been trying to use machine-learning based approaches to solve a number of different compiler optimization problems. These techniques primarily enhance the quality of the obtained results and, more importantly, make it feasible to tackle two main compiler optimization problems: optimization selection (choosing which optimizations to apply) and phase-ordering (choosing the order of applying optimizations). The compiler optimization space continues to grow due to the advancement of applications, increasing number of compiler optimizations, and new target architectures. Generic optimization passes in compilers cannot fully leverage newly introduced optimizations and, therefore, cannot keep up with the pace of increasing options. This survey summarizes and classifies the recent advances in using machine learning for the compiler optimization field, particularly on the two major problems of (1) selecting the best optimizations and (2) the phase-ordering of optimizations. The survey highlights the approaches taken so far, the obtained results, the fine-grain classification among different approaches and finally, the influential papers of the field.Comment: version 5.0 (updated on September 2018)- Preprint Version For our Accepted Journal @ ACM CSUR 2018 (42 pages) - This survey will be updated quarterly here (Send me your new published papers to be added in the subsequent version) History: Received November 2016; Revised August 2017; Revised February 2018; Accepted March 2018

    Transformations of High-Level Synthesis Codes for High-Performance Computing

    Full text link
    Specialized hardware architectures promise a major step in performance and energy efficiency over the traditional load/store devices currently employed in large scale computing systems. The adoption of high-level synthesis (HLS) from languages such as C/C++ and OpenCL has greatly increased programmer productivity when designing for such platforms. While this has enabled a wider audience to target specialized hardware, the optimization principles known from traditional software design are no longer sufficient to implement high-performance codes. Fast and efficient codes for reconfigurable platforms are thus still challenging to design. To alleviate this, we present a set of optimizing transformations for HLS, targeting scalable and efficient architectures for high-performance computing (HPC) applications. Our work provides a toolbox for developers, where we systematically identify classes of transformations, the characteristics of their effect on the HLS code and the resulting hardware (e.g., increases data reuse or resource consumption), and the objectives that each transformation can target (e.g., resolve interface contention, or increase parallelism). We show how these can be used to efficiently exploit pipelining, on-chip distributed fast memory, and on-chip streaming dataflow, allowing for massively parallel architectures. To quantify the effect of our transformations, we use them to optimize a set of throughput-oriented FPGA kernels, demonstrating that our enhancements are sufficient to scale up parallelism within the hardware constraints. With the transformations covered, we hope to establish a common framework for performance engineers, compiler developers, and hardware developers, to tap into the performance potential offered by specialized hardware architectures using HLS

    Enhancing Performance of Computer Vision Applications on Low-Power Embedded Systems Through Heterogeneous Parallel Programming

    Get PDF
    Enabling computer vision applications on low-power embedded systems gives rise to new challenges for embedded SW developers. Such applications implement different functionalities, like image recognition based on deep learning, simultaneous localization and mapping tasks. They are characterized by stringent performance constraints to guarantee real-time behaviors and, at the same time, energy constraints to save battery on the mobile platform. Even though heterogeneous embedded boards are getting pervasive for their high computational power at low power costs, they need a time consuming customization of the whole application (i.e., mapping of application blocks to CPUGPU processing elements and their synchronization) to efficiently exploit their potentiality. Different languages and environments have been proposed for such an embedded SW customization. Nevertheless, they often find limitations on complex real cases, as their application is mutual exclusive. This paper presents a comprehensive framework that relies on a heterogeneous parallel programming model, which combines OpenMP, PThreads, OpenVX, OpenCV, and CUDA to best exploit different levels of parallelism while guaranteeing a semi-automatic customization. The paper shows how such languages and API platforms have been interfaced, synchronized, and applied to customize an ORBSLAM application for an NVIDIA Jetson TX2 board
    • …
    corecore