269 research outputs found

    Variational recurrent sequence-to-sequence retrieval for stepwise illustration

    Get PDF
    We address and formalise the task of sequence-to-sequence (seq2seq) cross-modal retrieval. Given a sequence of text passages as query, the goal is to retrieve a sequence of images that best describes and aligns with the query. This new task extends the traditional cross-modal retrieval, where each image-text pair is treated independently ignoring broader context. We propose a novel variational recurrent seq2seq (VRSS) retrieval model for this seq2seq task. Unlike most cross-modal methods, we generate an image vector corresponding to the latent topic obtained from combining the text semantics and context. This synthetic image embedding point associated with every text embedding point can then be employed for either image generation or image retrieval as desired. We evaluate the model for the application of stepwise illustration of recipes, where a sequence of relevant images are retrieved to best match the steps described in the text. To this end, we build and release a new Stepwise Recipe dataset for research purposes, containing 10K recipes (sequences of image-text pairs) having a total of 67K image-text pairs. To our knowledge, it is the first publicly available dataset to offer rich semantic descriptions in a focused category such as food or recipes. Our model is shown to outperform several competitive and relevant baselines in the experiments. We also provide qualitative analysis of how semantically meaningful the results produced by our model are through human evaluation and comparison with relevant existing methods

    Improving average ranking precision in user searches for biomedical research datasets

    Full text link
    Availability of research datasets is keystone for health and life science study reproducibility and scientific progress. Due to the heterogeneity and complexity of these data, a main challenge to be overcome by research data management systems is to provide users with the best answers for their search queries. In the context of the 2016 bioCADDIE Dataset Retrieval Challenge, we investigate a novel ranking pipeline to improve the search of datasets used in biomedical experiments. Our system comprises a query expansion model based on word embeddings, a similarity measure algorithm that takes into consideration the relevance of the query terms, and a dataset categorisation method that boosts the rank of datasets matching query constraints. The system was evaluated using a corpus with 800k datasets and 21 annotated user queries. Our system provides competitive results when compared to the other challenge participants. In the official run, it achieved the highest infAP among the participants, being +22.3% higher than the median infAP of the participant's best submissions. Overall, it is ranked at top 2 if an aggregated metric using the best official measures per participant is considered. The query expansion method showed positive impact on the system's performance increasing our baseline up to +5.0% and +3.4% for the infAP and infNDCG metrics, respectively. Our similarity measure algorithm seems to be robust, in particular compared to Divergence From Randomness framework, having smaller performance variations under different training conditions. Finally, the result categorization did not have significant impact on the system's performance. We believe that our solution could be used to enhance biomedical dataset management systems. In particular, the use of data driven query expansion methods could be an alternative to the complexity of biomedical terminologies

    Neural models for stepwise text illustration

    Get PDF
    In this thesis, we investigate the task of sequence-to-sequence (seq2seq) retrieval: given a sequence (of text passages) as the query, retrieve a sequence (of images) that best describes and aligns with the query. This is a step beyond the traditional cross-modal retrieval which treats each image-text pair independently and ignores broader context. Since this is a difficult task, we break it into steps. We start with caption generation for images in news articles. Different from traditional image captioning task where a text description is generated given an image, here, a caption is generated conditional on both image and the news articles where it appears. We propose a novel neural-networks based methodology to take into account both news article content and image semantics to generate a caption best describing the image and its surrounding text context. Our results outperform existing approaches to image captioning generation. We then introduce two new novel datasets, GutenStories and Stepwise Recipe datasets for the task of story picturing and sequential text illustration. GutenStories consists of around 90k text paragraphs, each accompanied with an image, aligned in around 18k visual stories. It consists of a wide variety of images and story content styles. StepwiseRecipe is a similar dataset having sequenced image-text pairs, but having only domain-constrained images, namely food-related. It consists of 67k text paragraphs (cooking instructions), each accompanied by an image describing the step, aligned in 10k recipes. Both datasets are web-scrawled and systematically filtered and cleaned. We propose a novel variational recurrent seq2seq (VRSS) retrieval model. xii The model encodes two streams of information at every step: the contextual information from both text and images retrieved in previous steps, and the semantic meaning of the current input (text) as a latent vector. These together guide the retrieval of a relevant image from the repository to match the semantics of the given text. The model has been evaluated on both the Stepwise Recipe and GutenStories datasets. The results on several automatic evaluation measures show that our model outperforms several competitive and relevant baselines. We also qualitatively analyse the model both using human evaluation and by visualizing the representation space to judge the semantical meaningfulness. We further discuss the challenges faced on the more difficult GutenStories and outline possible solutions

    Self-RAG: Learning to Retrieve, Generate, and Critique through Self-Reflection

    Full text link
    Despite their remarkable capabilities, large language models (LLMs) often produce responses containing factual inaccuracies due to their sole reliance on the parametric knowledge they encapsulate. Retrieval-Augmented Generation (RAG), an ad hoc approach that augments LMs with retrieval of relevant knowledge, decreases such issues. However, indiscriminately retrieving and incorporating a fixed number of retrieved passages, regardless of whether retrieval is necessary, or passages are relevant, diminishes LM versatility or can lead to unhelpful response generation. We introduce a new framework called Self-Reflective Retrieval-Augmented Generation (Self-RAG) that enhances an LM's quality and factuality through retrieval and self-reflection. Our framework trains a single arbitrary LM that adaptively retrieves passages on-demand, and generates and reflects on retrieved passages and its own generations using special tokens, called reflection tokens. Generating reflection tokens makes the LM controllable during the inference phase, enabling it to tailor its behavior to diverse task requirements. Experiments show that Self-RAG (7B and 13B parameters) significantly outperforms state-of-the-art LLMs and retrieval-augmented models on a diverse set of tasks. Specifically, Self-RAG outperforms ChatGPT and retrieval-augmented Llama2-chat on Open-domain QA, reasoning and fact verification tasks, and it shows significant gains in improving factuality and citation accuracy for long-form generations relative to these models.Comment: 30 pages, 2 figures, 12 table

    Training Datasets for Machine Reading Comprehension and Their Limitations

    Get PDF
    Neural networks are a powerful model class to learn machine Reading Comprehen- sion (RC), yet they crucially depend on the availability of suitable training datasets. In this thesis we describe methods for data collection, evaluate the performance of established models, and examine a number of model behaviours and dataset limita- tions. We first describe the creation of a data resource for the science exam QA do- main, and compare existing models on the resulting dataset. The collected ques- tions are plausible – non-experts can distinguish them from real exam questions with 55% accuracy – and using them as additional training data leads to improved model scores on real science exam questions. Second, we describe and apply a distant supervision dataset construction method for multi-hop RC across documents. We identify and mitigate several dataset assembly pitfalls – a lack of unanswerable candidates, label imbalance, and spurious correlations between documents and particular candidates – which often leave shallow predictive cues for the answer. Furthermore we demonstrate that se- lecting relevant document combinations is a critical performance bottleneck on the datasets created. We thus investigate Pseudo-Relevance Feedback, which leads to improvements compared to TF-IDF-based document combination selection both in retrieval metrics and answer accuracy. Third, we investigate model undersensitivity: model predictions do not change when given adversarially altered questions in SQUAD2.0 and NEWSQA, even though they should. We characterise affected samples, and show that the phe- nomenon is related to a lack of structurally similar but unanswerable samples during training: data augmentation reduces the adversarial error rate, e.g. from 51.7% to 20.7% for a BERT model on SQUAD2.0, and improves robustness also in other settings. Finally we explore efficient formal model verification via Interval Bound Propagation (IBP) to measure and address model undersensitivity, and show that using an IBP-derived auxiliary loss can improve verification rates, e.g. from 2.8% to 18.4% on the SNLI test set

    ANSWERING TOPICAL INFORMATION NEEDS USING NEURAL ENTITY-ORIENTED INFORMATION RETRIEVAL AND EXTRACTION

    Get PDF
    In the modern world, search engines are an integral part of human lives. The field of Information Retrieval (IR) is concerned with finding material (usually documents) of an unstructured nature (usually text) that satisfies an information need (query) from within large collections (usually stored on computers). The search engine then displays a ranked list of results relevant to our query. Traditional document retrieval algorithms match a query to a document using the overlap of words in both. However, the last decade has seen the focus shifting to leveraging the rich semantic information available in the form of entities. Entities are uniquely identifiable objects or things such as places, events, diseases, etc. that exist in the real or fictional world. Entity-oriented search systems leverage the semantic information associated with entities (e.g., names, types, etc.) to better match documents to queries. Web search engines would provide better search results if they understand the meaning of a query. This dissertation advances the state-of-the-art in IR by developing novel algorithmsthat understand text (query, document, question, sentence, etc.) at the semantic level. To this end, this dissertation aims to understand the fine-grained meaning of entities from the context in which the entities have been mentioned, for example, “oysters” in the context of food versus ecosystems. Further, we aim to automatically learn (vector) representations of entities that incorporate this fine-grained knowledge and knowledge about the query. This work refines the automatic understanding of text passages using deep learning, a modern artificial intelligence paradigm. This dissertation utilized the semantic information extracted from entities to retrieve materials (text and entities) relevant to a query. The interplay between text and entities in the text is studied by addressing three related prediction problems: (1) Identify entities that are relevant for the query, (2) Understand an entity’s meaning in the context of the query, and (3) Identify text passages that elaborate the connection between the query and an entity. The research presented in this dissertation may be integrated into a larger system de-signed for answering complex topical queries such as dark chocolate health benefits which require the search engine to automatically understand the connections between the query and the relevant material, thus transforming the search engine into an answering engine

    Neural Methods for Effective, Efficient, and Exposure-Aware Information Retrieval

    Get PDF
    Neural networks with deep architectures have demonstrated significant performance improvements in computer vision, speech recognition, and natural language processing. The challenges in information retrieval (IR), however, are different from these other application areas. A common form of IR involves ranking of documents--or short passages--in response to keyword-based queries. Effective IR systems must deal with query-document vocabulary mismatch problem, by modeling relationships between different query and document terms and how they indicate relevance. Models should also consider lexical matches when the query contains rare terms--such as a person's name or a product model number--not seen during training, and to avoid retrieving semantically related but irrelevant results. In many real-life IR tasks, the retrieval involves extremely large collections--such as the document index of a commercial Web search engine--containing billions of documents. Efficient IR methods should take advantage of specialized IR data structures, such as inverted index, to efficiently retrieve from large collections. Given an information need, the IR system also mediates how much exposure an information artifact receives by deciding whether it should be displayed, and where it should be positioned, among other results. Exposure-aware IR systems may optimize for additional objectives, besides relevance, such as parity of exposure for retrieved items and content publishers. In this thesis, we present novel neural architectures and methods motivated by the specific needs and challenges of IR tasks.Comment: PhD thesis, Univ College London (2020

    Pretrained Transformers for Text Ranking: BERT and Beyond

    Get PDF
    The goal of text ranking is to generate an ordered list of texts retrieved from a corpus in response to a query. Although the most common formulation of text ranking is search, instances of the task can also be found in many natural language processing applications. This survey provides an overview of text ranking with neural network architectures known as transformers, of which BERT is the best-known example. The combination of transformers and self-supervised pretraining has been responsible for a paradigm shift in natural language processing (NLP), information retrieval (IR), and beyond. In this survey, we provide a synthesis of existing work as a single point of entry for practitioners who wish to gain a better understanding of how to apply transformers to text ranking problems and researchers who wish to pursue work in this area. We cover a wide range of modern techniques, grouped into two high-level categories: transformer models that perform reranking in multi-stage architectures and dense retrieval techniques that perform ranking directly. There are two themes that pervade our survey: techniques for handling long documents, beyond typical sentence-by-sentence processing in NLP, and techniques for addressing the tradeoff between effectiveness (i.e., result quality) and efficiency (e.g., query latency, model and index size). Although transformer architectures and pretraining techniques are recent innovations, many aspects of how they are applied to text ranking are relatively well understood and represent mature techniques. However, there remain many open research questions, and thus in addition to laying out the foundations of pretrained transformers for text ranking, this survey also attempts to prognosticate where the field is heading
    • …
    corecore