597 research outputs found

    On automatic emotion classification using acoustic features

    No full text
    In this thesis, we describe extensive experiments on the classification of emotions from speech using acoustic features. This area of research has important applications in human computer interaction. We have thoroughly reviewed the current literature and present our results on some of the contemporary emotional speech databases. The principal focus is on creating a large set of acoustic features, descriptive of different emotional states and finding methods for selecting a subset of best performing features by using feature selection methods. In this thesis we have looked at several traditional feature selection methods and propose a novel scheme which employs a preferential Borda voting strategy for ranking features. The comparative results show that our proposed scheme can strike a balance between accurate but computationally intensive wrapper methods and less accurate but computationally less intensive filter methods for feature selection. By using the selected features, several schemes for extending the binary classifiers to multiclass classification are tested. Some of these classifiers form serial combinations of binary classifiers while others use a hierarchical structure to perform this task. We describe a new hierarchical classification scheme, which we call Data-Driven Dimensional Emotion Classification (3DEC), whose decision hierarchy is based on non-metric multidimensional scaling (NMDS) of the data. This method of creating a hierarchical structure for the classification of emotion classes gives significant improvements over other methods tested. The NMDS representation of emotional speech data can be interpreted in terms of the well-known valence-arousal model of emotion. We find that this model does not givea particularly good fit to the data: although the arousal dimension can be identified easily, valence is not well represented in the transformed data. From the recognitionresults on these two dimensions, we conclude that valence and arousal dimensions are not orthogonal to each other. In the last part of this thesis, we deal with the very difficult but important topic of improving the generalisation capabilities of speech emotion recognition (SER) systems over different speakers and recording environments. This topic has been generally overlooked in the current research in this area. First we try the traditional methods used in automatic speech recognition (ASR) systems for improving the generalisation of SER in intra– and inter–database emotion classification. These traditional methods do improve the average accuracy of the emotion classifier. In this thesis, we identify these differences in the training and test data, due to speakers and acoustic environments, as a covariate shift. This shift is minimised by using importance weighting algorithms from the emerging field of transfer learning to guide the learning algorithm towards that training data which gives better representation of testing data. Our results show that importance weighting algorithms can be used to minimise the differences between the training and testing data. We also test the effectiveness of importance weighting algorithms on inter–database and cross-lingual emotion recognition. From these results, we draw conclusions about the universal nature of emotions across different languages

    Audio-Visual Fusion for Emotion Recognition in the Valence-Arousal Space Using Joint Cross-Attention

    Full text link
    Automatic emotion recognition (ER) has recently gained lot of interest due to its potential in many real-world applications. In this context, multimodal approaches have been shown to improve performance (over unimodal approaches) by combining diverse and complementary sources of information, providing some robustness to noisy and missing modalities. In this paper, we focus on dimensional ER based on the fusion of facial and vocal modalities extracted from videos, where complementary audio-visual (A-V) relationships are explored to predict an individual's emotional states in valence-arousal space. Most state-of-the-art fusion techniques rely on recurrent networks or conventional attention mechanisms that do not effectively leverage the complementary nature of A-V modalities. To address this problem, we introduce a joint cross-attentional model for A-V fusion that extracts the salient features across A-V modalities, that allows to effectively leverage the inter-modal relationships, while retaining the intra-modal relationships. In particular, it computes the cross-attention weights based on correlation between the joint feature representation and that of the individual modalities. By deploying the joint A-V feature representation into the cross-attention module, it helps to simultaneously leverage both the intra and inter modal relationships, thereby significantly improving the performance of the system over the vanilla cross-attention module. The effectiveness of our proposed approach is validated experimentally on challenging videos from the RECOLA and AffWild2 datasets. Results indicate that our joint cross-attentional A-V fusion model provides a cost-effective solution that can outperform state-of-the-art approaches, even when the modalities are noisy or absent.Comment: arXiv admin note: substantial text overlap with arXiv:2203.14779, arXiv:2111.0522

    Multimodal sentiment analysis in real-life videos

    Get PDF
    This thesis extends the emerging field of multimodal sentiment analysis of real-life videos, taking two components into consideration: the emotion and the emotion's target. The emotion component of media is traditionally represented as a segment-based intensity model of emotion classes. This representation is replaced here by a value- and time-continuous view. Adjacent research fields, such as affective computing, have largely neglected the linguistic information available from automatic transcripts of audio-video material. As is demonstrated here, this text modality is well-suited for time- and value-continuous prediction. Moreover, source-specific problems, such as trustworthiness, have been largely unexplored so far. This work examines perceived trustworthiness of the source, and its quantification, in user-generated video data and presents a possible modelling path. Furthermore, the transfer between the continuous and discrete emotion representations is explored in order to summarise the emotional context at a segment level. The other component deals with the target of the emotion, for example, the topic the speaker is addressing. Emotion targets in a video dataset can, as is shown here, be coherently extracted based on automatic transcripts without limiting a priori parameters, such as the expected number of targets. Furthermore, alternatives to purely linguistic investigation in predicting targets, such as knowledge-bases and multimodal systems, are investigated. A new dataset is designed for this investigation, and, in conjunction with proposed novel deep neural networks, extensive experiments are conducted to explore the components described above. The developed systems show robust prediction results and demonstrate strengths of the respective modalities, feature sets, and modelling techniques. Finally, foundations are laid for cross-modal information prediction systems with applications to the correction of corrupted in-the-wild signals from real-life videos

    AVEC 2019 workshop and challenge: state-of-mind, detecting depression with AI, and cross-cultural affect recognition

    Get PDF
    The Audio/Visual Emotion Challenge and Workshop (AVEC 2019) "State-of-Mind, Detecting Depression with AI, and Cross-cultural Affect Recognition" is the ninth competition event aimed at the comparison of multimedia processing and machine learning methods for automatic audiovisual health and emotion analysis, with all participants competing strictly under the same conditions. The goal of the Challenge is to provide a common benchmark test set for multimodal information processing and to bring together the health and emotion recognition communities, as well as the audiovisual processing communities, to compare the relative merits of various approaches to health and emotion recognition from real-life data. This paper presents the major novelties introduced this year, the challenge guidelines, the data used, and the performance of the baseline systems on the three proposed tasks: state-of-mind recognition, depression assessment with AI, and cross-cultural affect sensing, respectively

    Automatic Detection of Dementia and related Affective Disorders through Processing of Speech and Language

    Get PDF
    In 2019, dementia is has become a trillion dollar disorder. Alzheimer’s disease (AD) is a type of dementia in which the main observable symptom is a decline in cognitive functions, notably memory, as well as language and problem-solving. Experts agree that early detection is crucial to effectively develop and apply interventions and treatments, underlining the need for effective and pervasive assessment and screening tools. The goal of this thesis is to explores how computational techniques can be used to process speech and language samples produced by patients suffering from dementia or related affective disorders, to the end of automatically detecting them in large populations us- ing machine learning models. A strong focus is laid on the detection of early stage dementia (MCI), as most clinical trials today focus on intervention at this level. To this end, novel automatic and semi-automatic analysis schemes for a speech-based cogni- tive task, i.e., verbal fluency, are explored and evaluated to be an appropriate screening task. Due to a lack of available patient data in most languages, world-first multilingual approaches to detecting dementia are introduced in this thesis. Results are encouraging and clear benefits on a small French dataset become visible. Lastly, the task of detecting these people with dementia who also suffer from an affective disorder called apathy is explored. Since they are more likely to convert into later stage of dementia faster, it is crucial to identify them. These are the fist experiments that consider this task us- ing solely speech and language as inputs. Results are again encouraging, both using only speech or language data elicited using emotional questions. Overall, strong results encourage further research in establishing speech-based biomarkers for early detection and monitoring of these disorders to better patients’ lives.Im Jahr 2019 ist Demenz zu einer Billionen-Dollar-Krankheit geworden. Die Alzheimer- Krankheit (AD) ist eine Form der Demenz, bei der das Hauptsymptom eine Abnahme der kognitiven Funktionen ist, insbesondere des Gedächtnisses sowie der Sprache und des Problemlösungsvermögens. Experten sind sich einig, dass eine frühzeitige Erkennung entscheidend für die effektive Entwicklung und Anwendung von Interventionen und Behandlungen ist, was den Bedarf an effektiven und durchgängigen Bewertungsund Screening-Tools unterstreicht. Das Ziel dieser Arbeit ist es zu erforschen, wie computergest ützte Techniken eingesetzt werden können, um Sprach- und Sprechproben von Patienten, die an Demenz oder verwandten affektiven Störungen leiden, zu verarbeiten, mit dem Ziel, diese in großen Populationen mit Hilfe von maschinellen Lernmodellen automatisch zu erkennen. Ein starker Fokus liegt auf der Erkennung von Demenz im Frühstadium (MCI), da sich die meisten klinischen Studien heute auf eine Intervention auf dieser Ebene konzentrieren. Zu diesem Zweck werden neuartige automatische und halbautomatische Analyseschemata für eine sprachbasierte kognitive Aufgabe, d.h. die verbale Geläufigkeit, erforscht und als geeignete Screening-Aufgabe bewertet. Aufgrund des Mangels an verfügbaren Patientendaten in den meisten Sprachen werden in dieser Arbeit weltweit erstmalig mehrsprachige Ansätze zur Erkennung von Demenz vorgestellt. Die Ergebnisse sind ermutigend und es werden deutliche Vorteile an einem kleinen französischen Datensatz sichtbar. Schließlich wird die Aufgabe untersucht, jene Menschen mit Demenz zu erkennen, die auch an einer affektiven Störung namens Apathie leiden. Da sie mit größerer Wahrscheinlichkeit schneller in ein späteres Stadium der Demenz übergehen, ist es entscheidend, sie zu identifizieren. Dies sind die ersten Experimente, die diese Aufgabe unter ausschließlicher Verwendung von Sprache und Sprache als Input betrachten. Die Ergebnisse sind wieder ermutigend, sowohl bei der Verwendung von reiner Sprache als auch bei der Verwendung von Sprachdaten, die durch emotionale Fragen ausgelöst werden. Insgesamt sind die Ergebnisse sehr ermutigend und ermutigen zu weiterer Forschung, um sprachbasierte Biomarker für die Früherkennung und Überwachung dieser Erkrankungen zu etablieren und so das Leben der Patienten zu verbessern

    Detecting emotions from speech using machine learning techniques

    Get PDF
    D.Phil. (Electronic Engineering

    Multimodal Emotion Recognition among Couples from Lab Settings to Daily Life using Smartwatches

    Full text link
    Couples generally manage chronic diseases together and the management takes an emotional toll on both patients and their romantic partners. Consequently, recognizing the emotions of each partner in daily life could provide an insight into their emotional well-being in chronic disease management. The emotions of partners are currently inferred in the lab and daily life using self-reports which are not practical for continuous emotion assessment or observer reports which are manual, time-intensive, and costly. Currently, there exists no comprehensive overview of works on emotion recognition among couples. Furthermore, approaches for emotion recognition among couples have (1) focused on English-speaking couples in the U.S., (2) used data collected from the lab, and (3) performed recognition using observer ratings rather than partner's self-reported / subjective emotions. In this body of work contained in this thesis (8 papers - 5 published and 3 currently under review in various journals), we fill the current literature gap on couples' emotion recognition, develop emotion recognition systems using 161 hours of data from a total of 1,051 individuals, and make contributions towards taking couples' emotion recognition from the lab which is the status quo, to daily life. This thesis contributes toward building automated emotion recognition systems that would eventually enable partners to monitor their emotions in daily life and enable the delivery of interventions to improve their emotional well-being.Comment: PhD Thesis, 2022 - ETH Zuric

    Music emotion recognition: a multimodal machine learning approach

    Get PDF
    Music emotion recognition (MER) is an emerging domain of the Music Information Retrieval (MIR) scientific community, and besides, music searches through emotions are one of the major selection preferred by web users. As the world goes to digital, the musical contents in online databases, such as Last.fm have expanded exponentially, which require substantial manual efforts for managing them and also keeping them updated. Therefore, the demand for innovative and adaptable search mechanisms, which can be personalized according to users’ emotional state, has gained increasing consideration in recent years. This thesis concentrates on addressing music emotion recognition problem by presenting several classification models, which were fed by textual features, as well as audio attributes extracted from the music. In this study, we build both supervised and semisupervised classification designs under four research experiments, that addresses the emotional role of audio features, such as tempo, acousticness, and energy, and also the impact of textual features extracted by two different approaches, which are TF-IDF and Word2Vec. Furthermore, we proposed a multi-modal approach by using a combined feature-set consisting of the features from the audio content, as well as from context-aware data. For this purpose, we generated a ground truth dataset containing over 1500 labeled song lyrics and also unlabeled big data, which stands for more than 2.5 million Turkish documents, for achieving to generate an accurate automatic emotion classification system. The analytical models were conducted by adopting several algorithms on the crossvalidated data by using Python. As a conclusion of the experiments, the best-attained performance was 44.2% when employing only audio features, whereas, with the usage of textual features, better performances were observed with 46.3% and 51.3% accuracy scores considering supervised and semi-supervised learning paradigms, respectively. As of last, even though we created a comprehensive feature set with the combination of audio and textual features, this approach did not display any significant improvement for classification performanc
    corecore