30,672 research outputs found

    Interaction between high-level and low-level image analysis for semantic video object extraction

    Get PDF
    Authors of articles published in EURASIP Journal on Advances in Signal Processing are the copyright holders of their articles and have granted to any third party, in advance and in perpetuity, the right to use, reproduce or disseminate the article, according to the SpringerOpen copyright and license agreement (http://www.springeropen.com/authors/license)

    Contextual cropping and scaling of TV productions

    Get PDF
    This is the author's accepted manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s11042-011-0804-3. Copyright @ Springer Science+Business Media, LLC 2011.In this paper, an application is presented which automatically adapts SDTV (Standard Definition Television) sports productions to smaller displays through intelligent cropping and scaling. It crops regions of interest of sports productions based on a smart combination of production metadata and systematic video analysis methods. This approach allows a context-based composition of cropped images. It provides a differentiation between the original SD version of the production and the processed one adapted to the requirements for mobile TV. The system has been comprehensively evaluated by comparing the outcome of the proposed method with manually and statically cropped versions, as well as with non-cropped versions. Envisaged is the integration of the tool in post-production and live workflows

    Silhouette coverage analysis for multi-modal video surveillance

    Get PDF
    In order to improve the accuracy in video-based object detection, the proposed multi-modal video surveillance system takes advantage of the different kinds of information represented by visual, thermal and/or depth imaging sensors. The multi-modal object detector of the system can be split up in two consecutive parts: the registration and the coverage analysis. The multi-modal image registration is performed using a three step silhouette-mapping algorithm which detects the rotation, scale and translation between moving objects in the visual, (thermal) infrared and/or depth images. First, moving object silhouettes are extracted to separate the calibration objects, i.e., the foreground, from the static background. Key components are dynamic background subtraction, foreground enhancement and automatic thresholding. Then, 1D contour vectors are generated from the resulting multi-modal silhouettes using silhouette boundary extraction, cartesian to polar transform and radial vector analysis. Next, to retrieve the rotation angle and the scale factor between the multi-sensor image, these contours are mapped on each other using circular cross correlation and contour scaling. Finally, the translation between the images is calculated using maximization of binary correlation. The silhouette coverage analysis also starts with moving object silhouette extraction. Then, it uses the registration information, i.e., rotation angle, scale factor and translation vector, to map the thermal, depth and visual silhouette images on each other. Finally, the coverage of the resulting multi-modal silhouette map is computed and is analyzed over time to reduce false alarms and to improve object detection. Prior experiments on real-world multi-sensor video sequences indicate that automated multi-modal video surveillance is promising. This paper shows that merging information from multi-modal video further increases the detection results

    A novel approach to recognition of the detected moving objects in non-stationary background using heuristics and colour measurements : a thesis presented in partial fulfilment of the requirement for the degree of Master of Engineering at Massey University, Albany, New Zealand

    Get PDF
    Computer vision has become a growing area of research which involves two fundamental steps, object detection and object recognition. These two steps have been implemented in real world scenarios such as video surveillance systems, traffic cameras for counting cars, or more explicit detection such as detecting faces and recognizing facial expressions. Humans have a vision system that provides sophisticated ways to detect and recognize objects. Colour detection, depth of view and our past experience helps us determine the class of objects with respect to object’s size, shape and the context of the environment. Detection of moving objects on a non-stationary background and recognizing the class of these detected objects, are tasks that have been approached in many different ways. However, the accuracy and efficiency of current methods for object detection are still quite low, due to high computation time and memory intensive approaches. Similarly, object recognition has been approached in many ways but lacks the perceptive methodology to recognise objects. This thesis presents an improved algorithm for detection of moving objects on a non-stationary background. It also proposes a new method for object recognition. Detection of moving objects is initiated by detecting SURF features to identify unique keypoints in the first frame. These keypoints are then searched through individually in another frame using cross correlation, resulting in a process called optical flow. Rejection of outliers is performed by using keypoints to compute global shift of pixels due to camera motion, which helps isolate the points that belong to the moving objects. These points are grouped into clusters using the proposed improved clustering algorithm. The clustering function is capable of adapting to the search radius around a feature point by taking the average Euclidean distance between all the feature points into account. The detected object is then processed through colour measurement and heuristics. Heuristics provide context of the surroundings to recognize the class of the object based upon the object’s size, shape and the environment it is in. This gives object recognition a perceptive approach. Results from the proposed method have shown successful detection of moving objects in various scenes with dynamic backgrounds achieving an efficiency for object detection of over 95% for both indoor and outdoor scenes. The average processing time was computed to be around 16.5 seconds which includes the time taken to detect objects, as well as recognize them. On the other hand, Heuristic and colour based object recognition methodology achieved an efficiency of over 97%

    A system for learning statistical motion patterns

    Get PDF
    Analysis of motion patterns is an effective approach for anomaly detection and behavior prediction. Current approaches for the analysis of motion patterns depend on known scenes, where objects move in predefined ways. It is highly desirable to automatically construct object motion patterns which reflect the knowledge of the scene. In this paper, we present a system for automatically learning motion patterns for anomaly detection and behavior prediction based on a proposed algorithm for robustly tracking multiple objects. In the tracking algorithm, foreground pixels are clustered using a fast accurate fuzzy k-means algorithm. Growing and prediction of the cluster centroids of foreground pixels ensure that each cluster centroid is associated with a moving object in the scene. In the algorithm for learning motion patterns, trajectories are clustered hierarchically using spatial and temporal information and then each motion pattern is represented with a chain of Gaussian distributions. Based on the learned statistical motion patterns, statistical methods are used to detect anomalies and predict behaviors. Our system is tested using image sequences acquired, respectively, from a crowded real traffic scene and a model traffic scene. Experimental results show the robustness of the tracking algorithm, the efficiency of the algorithm for learning motion patterns, and the encouraging performance of algorithms for anomaly detection and behavior prediction

    A system for learning statistical motion patterns

    Get PDF
    Analysis of motion patterns is an effective approach for anomaly detection and behavior prediction. Current approaches for the analysis of motion patterns depend on known scenes, where objects move in predefined ways. It is highly desirable to automatically construct object motion patterns which reflect the knowledge of the scene. In this paper, we present a system for automatically learning motion patterns for anomaly detection and behavior prediction based on a proposed algorithm for robustly tracking multiple objects. In the tracking algorithm, foreground pixels are clustered using a fast accurate fuzzy k-means algorithm. Growing and prediction of the cluster centroids of foreground pixels ensure that each cluster centroid is associated with a moving object in the scene. In the algorithm for learning motion patterns, trajectories are clustered hierarchically using spatial and temporal information and then each motion pattern is represented with a chain of Gaussian distributions. Based on the learned statistical motion patterns, statistical methods are used to detect anomalies and predict behaviors. Our system is tested using image sequences acquired, respectively, from a crowded real traffic scene and a model traffic scene. Experimental results show the robustness of the tracking algorithm, the efficiency of the algorithm for learning motion patterns, and the encouraging performance of algorithms for anomaly detection and behavior prediction

    DroTrack: High-speed Drone-based Object Tracking Under Uncertainty

    Full text link
    We present DroTrack, a high-speed visual single-object tracking framework for drone-captured video sequences. Most of the existing object tracking methods are designed to tackle well-known challenges, such as occlusion and cluttered backgrounds. The complex motion of drones, i.e., multiple degrees of freedom in three-dimensional space, causes high uncertainty. The uncertainty problem leads to inaccurate location predictions and fuzziness in scale estimations. DroTrack solves such issues by discovering the dependency between object representation and motion geometry. We implement an effective object segmentation based on Fuzzy C Means (FCM). We incorporate the spatial information into the membership function to cluster the most discriminative segments. We then enhance the object segmentation by using a pre-trained Convolution Neural Network (CNN) model. DroTrack also leverages the geometrical angular motion to estimate a reliable object scale. We discuss the experimental results and performance evaluation using two datasets of 51,462 drone-captured frames. The combination of the FCM segmentation and the angular scaling increased DroTrack precision by up to 9%9\% and decreased the centre location error by 162162 pixels on average. DroTrack outperforms all the high-speed trackers and achieves comparable results in comparison to deep learning trackers. DroTrack offers high frame rates up to 1000 frame per second (fps) with the best location precision, more than a set of state-of-the-art real-time trackers.Comment: 10 pages, 12 figures, FUZZ-IEEE 202

    Action Recognition in Videos: from Motion Capture Labs to the Web

    Full text link
    This paper presents a survey of human action recognition approaches based on visual data recorded from a single video camera. We propose an organizing framework which puts in evidence the evolution of the area, with techniques moving from heavily constrained motion capture scenarios towards more challenging, realistic, "in the wild" videos. The proposed organization is based on the representation used as input for the recognition task, emphasizing the hypothesis assumed and thus, the constraints imposed on the type of video that each technique is able to address. Expliciting the hypothesis and constraints makes the framework particularly useful to select a method, given an application. Another advantage of the proposed organization is that it allows categorizing newest approaches seamlessly with traditional ones, while providing an insightful perspective of the evolution of the action recognition task up to now. That perspective is the basis for the discussion in the end of the paper, where we also present the main open issues in the area.Comment: Preprint submitted to CVIU, survey paper, 46 pages, 2 figures, 4 table
    corecore