633 research outputs found

    Validation of thoracic aortic dimensions on ECG-triggered SSFP as alternative to contrast-enhanced MRA

    Get PDF
    Objectives: Assessment of thoracic aortic dimensions with non-ECG-triggered contrast-enhanced magnetic resonance angiography (CE-MRA) is accompanied with motion artefacts and requires gadolinium. To avoid both motion artefacts and gadolinium administration, we evaluated the similarity and reproducibility of dimensions measured on ECG-triggered, balanced steady-state free precession (SSFP) MRA as alternative to CE-MRA. Methods: All patients, with varying medical conditions, referred for thoracic aortic examination between September 2016 and March 2018, who underwent non-ECG-triggered CE-MRA and SSFP-MRA (1.5 T) were retrospectively included (n = 30). Aortic dimensions were measured after double-oblique multiplanar reconstruction by two observers at nine landmarks predefined by literature guidelines. Image quality was scored at the sinus of Valsalva, mid-ascending aorta and mid-descending aorta by semi-automatically assessing the vessel sharpness. Results: Aortic dimensions showed high agreement between non-ECG-triggered CE-MRA and SSFP-MRA (r = 0.99, p < 0.05) without overestimation or underestimation of aortic dimensions in SSFP-MRA (mean difference, 0.1 mm; limits of agreement, − 1.9 mm and 1.9 mm). Intra- and inter-observer variabilities were significantly smaller with SSFP-MRA for the sinus of Valsalva and sinotubular junction. Image quality of the sinus of Valsalva was significantly better with SSFP-MRA, as fewer images were of impaired quality (3/30) than in CE-MRA (21/30). Reproducibility of dimensions was significantly better in images scored as good quality compared to impaired quality in both sequences. Conclusions: Thoracic aortic dimensions measured on SSFP-MRA and non-ECG-triggered CE-MRA were similar. As expected, SSFP-MRA showed better reproducibility close to the aortic root because of lesser motion artefacts, making it a feasible non-contrast imaging alternative. Key Points: • SSFP-MRA provides similar dimensions as non-ECG-triggered CE-MRA. • Intra- and inter-observer reproducibilities improve for the sinus of Valsalva and sinotubular junction with SSFP-MRA. • ECG-triggered SSFP-MRA shows better image quality for landmarks close to the aortic root in the absence of cardiac motion

    Aortic root dimension changes during systole and diastole: evaluation with ECG-gated multidetector row computed tomography

    Get PDF
    Cardiac pulsatility and aortic compliance may result in aortic area and diameter changes throughout the cardiac cycle in the entire aorta. Until this moment these dynamic changes could never be established in the aortic root (aortic annulus, sinuses of Valsalva and sinotubular junction). The aim of this study was to visualize and characterize the changes in aortic root dimensions during systole and diastole with ECG-gated multidetector row computed tomography (MDCT). MDCT scans of subjects without aortic root disease were analyzed. Retrospectively, ECG-gated reconstructions at each 10% of the cardiac cycle were made and analyzed during systole (30–40%) and diastole (70–75%). Axial planes were reconstructed at three different levels of the aortic root. At each level the maximal and its perpendicular luminal dimension were measured. The mean dimensions of the total study group (n = 108, mean age 56 ± 13 years) do not show any significant difference between systole and diastole. The individual dimensions vary up to 5 mm. However, the differences range between minus 5 mm (diastolic dimension is greater than systolic dimensions) and 5 mm (vice versa). This variability is independent of gender, age, height and weight. This study demonstrated a significant individual dynamic change in the dimensions of the aortic root. These results are highly unpredictable. Most of the healthy subjects have larger systolic dimensions, however, some do have larger diastolic dimensions

    Validation of an AI-based algorithm for measurement of the thoracic aortic diameter in low-dose chest CT

    Get PDF
    OBJECTIVES: To evaluate the performance of artificial intelligence (AI) software for automatic thoracic aortic diameter assessment in a heterogeneous cohort with low-dose, non-contrast chest computed tomography (CT).MATERIALS AND METHODS: Participants of the Imaging in Lifelines (ImaLife) study who underwent low-dose, non-contrast chest CT (August 2017-May 2022) were included using random samples of 80 participants &lt;50y, ≥80y, and with thoracic aortic diameter ≥40 mm. AI-based aortic diameters at eight guideline compliant positions were compared with manual measurements. In 90 examinations (30 per group) diameters were reassessed for intra- and inter-reader variability, which was compared to discrepancy of the AI system using Bland-Altman analysis, paired samples t-testing and linear mixed models.RESULTS: We analyzed 240 participants (63 ± 16 years; 50 % men). AI evaluation failed in 11 cases due to incorrect segmentation (4.6 %), leaving 229 cases for analysis. No difference was found in aortic diameter between manual and automatic measurements (32.7 ± 6.4 mm vs 32.7 ± 6.0 mm, p = 0.70). Bland-Altman analysis yielded no systematic bias and a repeatability coefficient of 4.0 mm for AI. Mean discrepancy of AI (1.3 ± 1.6 mm) was comparable to inter-reader variability (1.4 ± 1.4 mm); only at the proximal aortic arch showed AI higher discrepancy (2.0 ± 1.8 mm vs 0.9 ± 0.9 mm, p &lt; 0.001). No difference between AI discrepancy and inter-reader variability was found for any subgroup (all: p &gt; 0.05).CONCLUSION: The AI software can accurately measure thoracic aortic diameters, with discrepancy to a human reader similar to inter-reader variability in a range from normal to dilated aortas.</p

    Etude morphologique et métrologique des sinus de Valsalva par traitement d'images tomographiques

    Get PDF
    L'objectif de cette thèse est l'élaboration et l'application de traitements d'images pour permettre une étude objective et fiable des sinus de Valsalva, importantes cavités de la base de l'aorte. Les méthodes proposées s'appliquent aux séquences ciné-IRM et aux examens de scanner sans qu'il n'y ait à modifier le paramétrage entre deux examens. Pour cela, nous avons d'abord étudié la morphologie de cette zone anatomique puis détaillé les différentes propriétés communes à toutes les images de sinus. Ceux-ci font en l'occurrence partie des principaux organes clairs et peu mobiles. Nous avons donc développé un algorithme qui détecte ces éléments et caractérise chacun d'entre eux par une trajectoire unique. Divers outils de morphologie mathématique ont été utilisés à cette occasion, tout comme pour l'extraction du contour des sinus dans chaque image. L'étape de segmentation repose elle sur la reconstruction géodésique, qui s'avère plus efficace et surtout plus robuste que l'usage de contours actifs usuels. L'intérieur des sinus forme un domaine simplement connexe et étoilé. Grâce à ce postulat, nous avons conçu une nouvelle reconstruction, nommée transformée en aurore, qui limite la propagation des intensités aux supports radiaux et présente les résultats dans un repère polaire pour une meilleure lecture des contours.Les points caractéristiques des sinus ont également été détectés, par étude de rayons et détermination de points dominants. Ces points fournissent les éléments nécessaires à une mesure automatique des sinus, mesure cohérente avec les mesures actuellement réalisées manuellement et les variations intra et inter-observateurs de celles-ci. D'autres outils sont enfin esquissés pour modéliser le contour par coniques, classer les images d'examens cinétiques en fonction du moment du cycle et suivre le mouvement des valves dans ces mêmes examens.L'ensemble de ces travaux ont amené à la réalisation d'un logiciel d'aide au diagnostic qui intègre nos méthodes et dont l'interface est également présentée dans le présent mémoire.This Phd thesis deals with the design and the use of image processing tools in order to allow a reliable and objective study of the sinuses of Valsalva which are important cavities of the aortic root. The proposed methods can be applied on cine-MR sequences and CT examinations without any change in the settings between two examinations.Firstly, we studied the morphology of this anatomical area and its constant properties in all images of the dataset. Sinuses are one of the main bright organs with limited movements. Hence a new algorithm has been designed. It detects and characterizes each bright organ by a single trajectory. Various tools of mathematical morphology are used for this step, as for the extraction of the contour of the sinuses in each image.The segmentation step is based on the geodesic reconstruction, which is more effective and more robust than the usual active contours. The shape depicting the sinuses is simply connected and a star domain. With this assumption, a new reconstruction is proposed, called the Aurora transform. This transform limits the spread of intensities only on the radial lines and shows its results in a polar space for a better reading of edges.The relevant points of the sinuses are also detected by a study of radii and the determination of dominant points along edges. An automatic measurement of the sinuses is deduced from these points. The values are very close to the manual measures currently done according to the intra-and inter-observer variations.Some other tools are finally outlined. They includes the modeling of edges by conics, the image classification depending on the time of the cycle in sequences and the tracking of the aortic valves in these examinations.This work led to the devlopement of a diagnostic aid software based on our methods. Its interface is also presented herein.DIJON-BU Doc.électronique (212319901) / SudocSudocFranceF

    Methodological approach for the assessment of ultrasound reproducibility of cardiac structure and function: a proposal of the study group of Echocardiography of the Italian Society of Cardiology (Ultra Cardia SIC) Part I

    Get PDF
    When applying echo-Doppler imaging for either clinical or research purposes it is very important to select the most adequate modality/technology and choose the most reliable and reproducible measurements. Quality control is a mainstay to reduce variability among institutions and operators and must be obtained by using appropriate procedures for data acquisition, storage and interpretation of echo-Doppler data. This goal can be achieved by employing an echo core laboratory (ECL), with the responsibility for standardizing image acquisition processes (performed at the peripheral echo-labs) and analysis (by monitoring and optimizing the internal intra- and inter-reader variability of measurements). Accordingly, the Working Group of Echocardiography of the Italian Society of Cardiology decided to design standardized procedures for imaging acquisition in peripheral laboratories and reading procedures and to propose a methodological approach to assess the reproducibility of echo-Doppler parameters of cardiac structure and function by using both standard and advanced technologies. A number of cardiologists experienced in cardiac ultrasound was involved to set up an ECL available for future studies involving complex imaging or including echo-Doppler measures as primary or secondary efficacy or safety end-points. The present manuscript describes the methodology of the procedures (imaging acquisition and measurement reading) and provides the documentation of the work done so far to test the reproducibility of the different echo-Doppler modalities (standard and advanced). These procedures can be suggested for utilization also in non referall echocardiographic laboratories as an "inside" quality check, with the aim at optimizing clinical consistency of echo-Doppler data

    Enabling automated device size selection for transcatheter aortic valve implantation

    Get PDF
    The number of transcatheter aortic valve implantation (TAVI) procedures is expected to increase significantly in the coming years. Improving efficiency will become essential for experienced operators performing large TAVI volumes, while new operators will require training and may benefit from accurate support. In this work, we present a fast deep learning method that can predict aortic annulus perimeter and area automatically from aortic annular plane images. We propose a method combining two deep convolutional neural networks followed by a postprocessing step. The models were trained with 355 patients using modern deep learning techniques, and the method was evaluated on another 118 patients. The method was validated against an interoperator variability study of the same 118 patients. The differences between the manually obtained aortic annulus measurements and the automatic predictions were similar to the differences between two independent observers (paired diff. of 3.3 +/- 16.8 mm(2) vs. 1.3 +/- 21.1 mm(2) for the area and a paired diff. of 0.6 +/- 1.7 mm vs. 0.2 +/- 2.5 mm for the perimeter). The area and perimeter were used to retrieve the suggested prosthesis sizes for the Edwards Sapien 3 and the Medtronic Evolut device retrospectively. The automatically obtained device size selections accorded well with the device sizes selected by operator 1. The total analysis time from aortic annular plane to prosthesis size was below one second. This study showed that automated TAVI device size selection using the proposed method is fast, accurate, and reproducible. Comparison with the interobserver variability has shown the reliability of the strategy, and embedding this tool based on deep learning in the preoperative planning routine has the potential to increase the efficiency while ensuring accuracy

    Correlations between vegetative autonomic function and specific left atrial functions in healthy adults

    Get PDF
    The functioning of the left atrium (LA) is partly controlled by the neural system. It was purposed to evaluate correlations between the result of Ewing's 5 standard cardiovascular reflex tests (SCRTs) characterizing autonomic function and LA volumetric and functional features as assessed by three-dimensional speckle-tracking echocardiography (3DSTE) in healthy individuals.The current study comprised 18 healthy volunteers being in sinus rhythm (mean age: 35 ± 12 years, 10 men). Measurement of blood pressure, ECG, 5 SCRTs, two-dimensional Doppler echocardiography and 3DSTE were performed. These parameters were in normal ranges in all cases.From LA volumetric parameters, only systolic total atrial emptying fraction (r = 0.559, p = 0.037) and early diastolic passive atrial emptying fraction (r = 0.539, p = 0.047) correlated with systolic blood pressure response to standing representing sympathetic autonomic function. From LA strains, peak mean segmental LA radial strain (RS) (r = -0.532, p = 0.050), global and mean segmental LA circumferential strain (CS) (r = 0.662, p = 0.010 and r = 0.635, p = 0.015, respectively) representing systolic LA function correlated with Valsalva ratio representing parasympathetic autonomic function. Global LA-RS (r = -0.713, p = 0.040) and LA-CS (r = 0.657, p = 0.011) and mean segmental LA-CS (r = 0.723, p = 0.003) at atrial contraction representing end-diastolic atrial contraction showed correlations with Valsalva ratio, as well. Peak global and mean segmental LA-CS (r = 0.532, p = 0.050 and r = 0.530, p = 0.050) and the same strains at atrial contraction (r = 0.704, p = 0.005 and r = 0.690, p = 0.006) representing systolic function and end-diastolic atrial contraction correlated with systolic blood pressure response to standing representing both parasympathetic and sympathetic autonomic functions.Significant correlations between features of vegetative autonomic function represented by Ewing's 5 SCRTs and specific LA functions represented by 3DSTE-derived LA volume-based functional properties and strains could be demonstrated in healthy adults
    corecore