178 research outputs found

    A stacking-based artificial intelligence framework for an effective detection and localization of colon polyps

    Get PDF
    Albuquerque, C., Henriques, R., & Castelli, M. (2022). A stacking-based artificial intelligence framework for an effective detection and localization of colon polyps. Scientific Reports, 12, 1-12. [17678]. https://doi.org/10.21203/rs.3.rs-1862362/v1, https://doi.org/10.1038/s41598-022-21574-w ------- This work was supported by national funds through FCT (Fundação para a Ciência e a Tecnologia), under the project - UIDB/04152/2020 - Centro de Investigação em Gestão de Informação (MagIC)/NOVA IMS.Polyp detection through colonoscopy is a widely used method to prevent colorectal cancer. The automation of this process aided by artificial intelligence allows faster and improved detection of polyps that can be missed during a standard colonoscopy. In this work, we propose implementing different object detection algorithms for polyp detection. To improve the mean average precision (mAP) of the detection, we combine the baseline models through a stacking approach. The experiments demonstrate the potential of this new methodology, which can reduce the workload for oncologists and increase the precision of the localization of polyps. Our proposal achieves an mAP of 0.86, translated into an improvement of 34.9% compared to the best baseline model and 28.8% with respect to the weighted boxes fusion ensemble technique.preprintpublishersversionepub_ahead_of_prin

    Multi-level feature fusion network combining attention mechanisms for polyp segmentation

    Full text link
    Clinically, automated polyp segmentation techniques have the potential to significantly improve the efficiency and accuracy of medical diagnosis, thereby reducing the risk of colorectal cancer in patients. Unfortunately, existing methods suffer from two significant weaknesses that can impact the accuracy of segmentation. Firstly, features extracted by encoders are not adequately filtered and utilized. Secondly, semantic conflicts and information redundancy caused by feature fusion are not attended to. To overcome these limitations, we propose a novel approach for polyp segmentation, named MLFF-Net, which leverages multi-level feature fusion and attention mechanisms. Specifically, MLFF-Net comprises three modules: Multi-scale Attention Module (MAM), High-level Feature Enhancement Module (HFEM), and Global Attention Module (GAM). Among these, MAM is used to extract multi-scale information and polyp details from the shallow output of the encoder. In HFEM, the deep features of the encoders complement each other by aggregation. Meanwhile, the attention mechanism redistributes the weight of the aggregated features, weakening the conflicting redundant parts and highlighting the information useful to the task. GAM combines features from the encoder and decoder features, as well as computes global dependencies to prevent receptive field locality. Experimental results on five public datasets show that the proposed method not only can segment multiple types of polyps but also has advantages over current state-of-the-art methods in both accuracy and generalization ability
    corecore