46 research outputs found

    Automatic low-cost IP watermarking technique based on output mark insertions

    No full text
    International audienceToday, although intellectual properties (IP) and their reuse are common, their use is causing design security issues: illegal copying, counterfeiting, and reverse engineering. IP watermarking is an efficient way to detect an unauthorized IP copy or a counterfeit. In this context, many interesting solutions have been proposed. However, few combine the watermarking process with synthesis. This article presents a new solution, i.e. automatic low cost IP watermarking included in the high-level synthesis process. The proposed method differs from those cited in the literature as the marking is not material, but is based on mathematical relationships between numeric values as inputs and outputs at specified times. Some implementation results with Xilinx Virtex-5 FPGA that the proposed solution required a lower area and timing overhead than existing solutions

    A Survey of hardware protection of design data for integrated circuits and intellectual properties

    No full text
    International audienceThis paper reviews the current situation regarding design protection in the microelectronics industry. Over the past ten years, the designers of integrated circuits and intellectual properties have faced increasing threats including counterfeiting, reverse-engineering and theft. This is now a critical issue for the microelectronics industry, mainly for fabless designers and intellectual properties designers. Coupled with increasing pressure to decrease the cost and increase the performance of integrated circuits, the design of a secure, efficient, lightweight protection scheme for design data is a serious challenge for the hardware security community. However, several published works propose different ways to protect design data including functional locking, hardware obfuscation, and IC/IP identification. This paper presents a survey of academic research on the protection of design data. It concludes with the need to design an efficient protection scheme based on several properties

    CYBERSECURITY FOR INTELLECTUAL PROPERTY: DEVELOPING PRACTICAL FINGERPRINTING TECHNIQUES FOR INTEGRATED CIRCUITRY

    Get PDF
    The system on a chip (SoC) paradigm for computing has become more prevalent in modern society. Because of this, reuse of different functional integrated circuits (ICs), with standardized inputs and outputs, make designing SoC systems easier. As a result, the theft of intellectual property for different ICs has become a highly profitable business. One method of theft-prevention is to add a signature, or fingerprint, to ICs so that they may be tracked after they are sold. The contribution of this dissertation is the creation and simulation of three new fingerprinting methods that can be implemented automatically during the design process. In addition, because manufacturing and design costs are significant, three of the fingerprinting methods presented, attempt to alleviate costs by determining the fingerprint in the post-silicon stage of the VLSI design cycle. Our first two approaches to fingerprint ICs, are to use Observability Don’t Cares (ODCs) and Satisfiability Don’t Cares (SDCs), which are almost always present in ICs, to hide our fingerprint. ODCs cause an IC to ignore certain internal signals, which we can utilize to create fingerprints that have a minimal performance overhead. Using a heuristic approach, we are also able to choose the overhead the gate will have by removing some fingerprint locations. The experiments show that this work is effective and can provide a large number of fingerprints for more substantial circuits, with a minimal overhead. SDCs are similar to ODCs except that they focus on input patterns, to gates, that cannot exist. For this work, we found a way to quickly locate most of the SDCs in a circuit and depending on the input patterns that we know will not occur, replace the gates to create a fingerprint with a minimal overhead. We also created two methods to implement this SDC fingerprinting method, each with their own advantages and disadvantages. Both the ODC and SDC fingerprinting methods can be implemented in the circuit design or physical design of the IC, and finalized in the post-silicon phase, thus reducing the cost of manufacturing several different circuits. The third method developed for this dissertation was based on our previous work on finite state machine (FSM) protection to generate a fingerprint. We show that we can edit ICs with incomplete FSMs by adding additional transitions from the set of don’t care transitions. Although the best candidates for this method are those with unused states and transitions, additional states can be added to the circuit to generate additional don’t care transitions and states, useful for generating more fingerprints. This method has the potential for an astronomical number of fingerprints, but the generated fingerprints need to be filtered for designs that have an acceptable design overhead in comparison to the original circuit. Our fourth and final method for IC fingerprinting utilizes scan-chains which help to monitor the internal state of a sequential circuit. By modifying the interconnects between flip flops in a scan chain we can create unique fingerprints that are easy to detect by the user. These modifications are done after the design for test and during the fabrication stage, which helps reduce redesign overhead. These changes can also be finalized in the post-silicon stage, similar to the work for the ODC and SDC fingerprinting, to minimize manufacturing costs. The hope with this dissertation is to demonstrate that these methods for generating fingerprints, for ICs, will improve upon the current state of the art. First, these methods will create a significant number of unique fingerprints. Second, they will create fingerprints that have an acceptable overhead and are easy to detect by the developer and are harder to detect or remove by the adversary. Finally, we show that three of the methods will reduce the cost of manufacturing by being able to be implemented in the later stages of their design cycle

    ОБЗОР МЕТОДОВ РЕАЛИЗАЦИИ АППАРАТНЫХ ВОДЯНЫХ ЗНАКОВ В ЦИФРОВЫХ УСТРОЙСТВАХ ПРОГРАММИРУЕМОЙ ЛОГИКИ

    Get PDF
    Application of watermarking technology for the protection of digital devices and their descriptionsis considered. Primary definitions, models, categories of attacks, characteristics and classificationof watermarks are described. Hardware watermarking examples are shown.Рассматривается применение технологии водяных знаков для защиты цифровых устройств и их проектных описаний. Приводятся основные определения, модели, категории атак, характеристики, классификация водяных знаков для данной области. Описываются примеры использования аппаратных водяных знаков

    Provably Trustworthy and Secure Hardware Design with Low Overhead

    Get PDF
    Due to the globalization of IC design in the semiconductor industry and outsourcing of chip manufacturing, 3PIPs become vulnerable to IP piracy, reverse engineering, counterfeit IC, and hardware Trojans. To thwart such attacks, ICs can be protected using logic encryption techniques. However, strong resilient techniques incur significant overheads. SCAs further complicate matters by introducing potential attacks post-fabrication. One of the most severe SCAs is PA attacks, in which an attacker can observe the power variations of the device and analyze them to extract the secret key. PA attacks can be mitigated via adding large extra hardware; however, the overheads of such solutions can render them impractical, especially when there are power and area constraints. In our first approach, we present two techniques to prevent normal attacks. The first one is based on inserting MUX equal to half/full of the output bit number. In the second technique, we first design PLGs using SiNW FETs and then replace some logic gates in the original design with their SiNW FETs-based PLGs counterparts. In our second approach, we use SiNW FETs to produce obfuscated ICs that are resistant to advanced reverse engineering attacks. Our method is based on designing a small block, whose output is untraceable, namely URSAT. Since URSAT may not offer very strong resilience against the combined AppSAT-removal attack, S-URSAT is achieved using only CMOS-logic gates, and this increases the security level of the design to robustly thwart all existing attacks. In our third topic, we present the usage of ASLD to produce secure and resilient circuits that withstand IC attacks (during the fabrication) and PA attacks (after fabrication). First, we show that ASLD has unique features that can be used to prevent PA and IC attacks. In our three topics, we evaluate each design based on performance overheads and security guarantees

    Security strategies in genomic files

    Get PDF
    There are new mechanisms to sequence and process the genomic code, discovering thus diagnostic tools and treatments. The file for a sequenced genome can reach hundreds of gigabytes. Thus, for further studies, we need new means to compress the information and a standardized representation to simplify the development of new tools. The ISO standardization group MPEG has used its expertise in compressing multimedia content to compress genomic information and develop its ´MPEG-G standard’. Given the sensitivity of the data, security is a major identified requirement. This thesis proposes novel technologies that assure the security of both the sequenced data and its metadata. We define a container-based file format to group data, metadata, and security information at the syntactical level. It includes new features like grouping multiple results in a same file to simplify the transport of whole studies. We use the granularity of the encoder’s output to enhance security. The information is represented in units, each dedicated to a specific region of the genome, which allows to provide encryption and signature features on a region base. We analyze the trade-off between security and an even more fine-grained approach and prove that apparently secure settings can be insecure: if the file creator may encrypt only specific elements of a unit, cross-checking unencrypted information permits to infer encrypted content. Most of the proposals for MPEG-G coming from other research groups and companies focused on data compression and representation. However, the need was recognized to find a solution for metadata encoding. Our proposal was included in the standard: an XML-based solution, separated in a core specification and extensions. It permits to adapt the metadata schema to the different genomic repositories' frameworks, without importing requirements from one framework to another. To simplify the handling of the resulting metadata, we define profiles, i.e. lists of extensions that must be present in a given framework. We use XML signature and XML encryption for metadata security. The MPEG requirements also concern access rules. Our privacy solutions limit the range of persons with access and we propose access rules represented with XACML to convey under which circumstances a user is granted access to a specific action among the ones specified in MPEG-G's API, e.g. filtering data by attributes. We also specify algorithms to combine multiple rules by defining default behaviors and exceptions. The standard’s security mechanisms protect the information only during transport and access. Once the data is obtained, the user could publish it. In order to identify leakers, we propose an algorithm that generates unique, virtually undetectable variations. Our solution is novel as the marking can be undone (and the utility of the data preserved) if the corresponding secret key is revealed. We also show how to combine multiple secret keys to avoid collusion. The API retained for MPEG-G considers search criteria not present in the indexing tables, which highlights shortcomings. Based on the proposed MPEG-G API we have developed a solution. It is based on a collaboration framework where the different users' needs and the patient's privacy settings result in a purpose-built file format that optimizes query times and provides privacy and authenticity on the patient-defined genomic regions. The encrypted output units are created and indexed to optimize query times and avoid rarely used indexing fields. Our approach resolves the shortcomings of MPEG-G's indexing strategy. We have submitted our technologies to the MPEG standardization committee. Many have been included in the final standard, via merging with other proposals (e.g. file format), discussion (e.g. security mechanisms), or direct acceptance (e.g. privacy rules).Hi han nous mètodes per la seqüenciació i el processament del codi genòmic, permetent descobrir eines de diagnòstic i tractaments en l’àmbit mèdic. El resultat de la seqüenciació d’un genoma es representa en un fitxer, que pot ocupar centenars de gigabytes. Degut a això, hi ha una necessitat d’una representació estandarditzada on la informació és comprimida. Dins de la ISO, el grup MPEG ha fet servir la seva experiència en compressió de dades multimèdia per comprimir dades genòmiques i desenvolupar l'estàndard MPEG-G, sent la seguretat un dels requeriments principals. L'objectiu de la tesi és garantir aquesta seguretat (encriptant, firmant i definint regles d¿ accés) tan per les dades seqüenciades com per les seves metadades. El primer pas és definir com transportar les dades, metadades i paràmetres de seguretat. Especifiquem un format de fitxer basat en contenidors per tal d'agrupar aquets elements a nivell sintàctic. La nostra solució proposa noves funcionalitats com agrupar múltiples resultats en un mateix fitxer. Pel que fa la seguretat de dades, la nostra proposta utilitza les propietats de la sortida del codificador. Aquesta sortida és estructurada en unitats, cadascuna dedicada a una regió concreta del genoma, permetent una encriptació i firma de dades específica a la unitat. Analitzem el compromís entre seguretat i un enfocament de gra més fi demostrant que configuracions aparentment vàlides poden no ser-ho: si es permet encriptar sols certes sub-unitats d'informació, creuant els continguts no encriptats, podem inferir el contingut encriptat. Quant a metadades, proposem una solució basada en XML separada en una especificació bàsica i en extensions. Podem adaptar l'esquema de metadades als diferents marcs de repositoris genòmics, sense imposar requeriments d’un marc a un altre. Per simplificar l'ús, plantegem la definició de perfils, és a dir, una llista de les extensions que han de ser present per un marc concret. Fem servir firmes XML i encriptació XML per implementar la seguretat de les metadades. Les nostres solucions per la privacitat limiten qui té accés a les dades, però no en limita l’ús. Proposem regles d’accés representades amb XACML per indicar en quines circumstàncies un usuari té dret d'executar una de les accions especificades a l'API de MPEG-G (per exemple, filtrar les dades per atributs). Presentem algoritmes per combinar regles, per tal de poder definir casos per defecte i excepcions. Els mecanismes de seguretat de MPEG-G protegeixen la informació durant el transport i l'accés. Una vegada l’usuari ha accedit a les dades, les podria publicar. Per tal d'identificar qui és l'origen del filtratge de dades, proposem un algoritme que genera modificacions úniques i virtualment no detectables. La nostra solució és pionera, ja que els canvis es poden desfer si el secret corresponent és publicat. Per tant, la utilitat de les dades és mantinguda. Demostrem que combinant varis secrets, podem evitar col·lusions. L'API seleccionada per MPEG-G, considera criteris de cerca que no són presents en les taules d’indexació. Basant-nos en aquesta API, hem desenvolupat una solució. És basada en un marc de col·laboració, on la combinació de les necessitats dels diferents usuaris i els requeriments de privacitat del pacient, es combinen en una representació ad-hoc que optimitza temps d’accessos tot i garantint la privacitat i autenticitat de les dades. La majoria de les nostres propostes s’han inclòs a la versió final de l'estàndard, fusionant-les amb altres proposes (com amb el format del fitxer), demostrant la seva superioritat (com amb els mecanismes de seguretat), i fins i tot sent acceptades directament (com amb les regles de privacitat).Postprint (published version

    Security strategies in genomic files

    Get PDF
    There are new mechanisms to sequence and process the genomic code, discovering thus diagnostic tools and treatments. The file for a sequenced genome can reach hundreds of gigabytes. Thus, for further studies, we need new means to compress the information and a standardized representation to simplify the development of new tools. The ISO standardization group MPEG has used its expertise in compressing multimedia content to compress genomic information and develop its ´MPEG-G standard’. Given the sensitivity of the data, security is a major identified requirement. This thesis proposes novel technologies that assure the security of both the sequenced data and its metadata. We define a container-based file format to group data, metadata, and security information at the syntactical level. It includes new features like grouping multiple results in a same file to simplify the transport of whole studies. We use the granularity of the encoder’s output to enhance security. The information is represented in units, each dedicated to a specific region of the genome, which allows to provide encryption and signature features on a region base. We analyze the trade-off between security and an even more fine-grained approach and prove that apparently secure settings can be insecure: if the file creator may encrypt only specific elements of a unit, cross-checking unencrypted information permits to infer encrypted content. Most of the proposals for MPEG-G coming from other research groups and companies focused on data compression and representation. However, the need was recognized to find a solution for metadata encoding. Our proposal was included in the standard: an XML-based solution, separated in a core specification and extensions. It permits to adapt the metadata schema to the different genomic repositories' frameworks, without importing requirements from one framework to another. To simplify the handling of the resulting metadata, we define profiles, i.e. lists of extensions that must be present in a given framework. We use XML signature and XML encryption for metadata security. The MPEG requirements also concern access rules. Our privacy solutions limit the range of persons with access and we propose access rules represented with XACML to convey under which circumstances a user is granted access to a specific action among the ones specified in MPEG-G's API, e.g. filtering data by attributes. We also specify algorithms to combine multiple rules by defining default behaviors and exceptions. The standard’s security mechanisms protect the information only during transport and access. Once the data is obtained, the user could publish it. In order to identify leakers, we propose an algorithm that generates unique, virtually undetectable variations. Our solution is novel as the marking can be undone (and the utility of the data preserved) if the corresponding secret key is revealed. We also show how to combine multiple secret keys to avoid collusion. The API retained for MPEG-G considers search criteria not present in the indexing tables, which highlights shortcomings. Based on the proposed MPEG-G API we have developed a solution. It is based on a collaboration framework where the different users' needs and the patient's privacy settings result in a purpose-built file format that optimizes query times and provides privacy and authenticity on the patient-defined genomic regions. The encrypted output units are created and indexed to optimize query times and avoid rarely used indexing fields. Our approach resolves the shortcomings of MPEG-G's indexing strategy. We have submitted our technologies to the MPEG standardization committee. Many have been included in the final standard, via merging with other proposals (e.g. file format), discussion (e.g. security mechanisms), or direct acceptance (e.g. privacy rules).Hi han nous mètodes per la seqüenciació i el processament del codi genòmic, permetent descobrir eines de diagnòstic i tractaments en l’àmbit mèdic. El resultat de la seqüenciació d’un genoma es representa en un fitxer, que pot ocupar centenars de gigabytes. Degut a això, hi ha una necessitat d’una representació estandarditzada on la informació és comprimida. Dins de la ISO, el grup MPEG ha fet servir la seva experiència en compressió de dades multimèdia per comprimir dades genòmiques i desenvolupar l'estàndard MPEG-G, sent la seguretat un dels requeriments principals. L'objectiu de la tesi és garantir aquesta seguretat (encriptant, firmant i definint regles d¿ accés) tan per les dades seqüenciades com per les seves metadades. El primer pas és definir com transportar les dades, metadades i paràmetres de seguretat. Especifiquem un format de fitxer basat en contenidors per tal d'agrupar aquets elements a nivell sintàctic. La nostra solució proposa noves funcionalitats com agrupar múltiples resultats en un mateix fitxer. Pel que fa la seguretat de dades, la nostra proposta utilitza les propietats de la sortida del codificador. Aquesta sortida és estructurada en unitats, cadascuna dedicada a una regió concreta del genoma, permetent una encriptació i firma de dades específica a la unitat. Analitzem el compromís entre seguretat i un enfocament de gra més fi demostrant que configuracions aparentment vàlides poden no ser-ho: si es permet encriptar sols certes sub-unitats d'informació, creuant els continguts no encriptats, podem inferir el contingut encriptat. Quant a metadades, proposem una solució basada en XML separada en una especificació bàsica i en extensions. Podem adaptar l'esquema de metadades als diferents marcs de repositoris genòmics, sense imposar requeriments d’un marc a un altre. Per simplificar l'ús, plantegem la definició de perfils, és a dir, una llista de les extensions que han de ser present per un marc concret. Fem servir firmes XML i encriptació XML per implementar la seguretat de les metadades. Les nostres solucions per la privacitat limiten qui té accés a les dades, però no en limita l’ús. Proposem regles d’accés representades amb XACML per indicar en quines circumstàncies un usuari té dret d'executar una de les accions especificades a l'API de MPEG-G (per exemple, filtrar les dades per atributs). Presentem algoritmes per combinar regles, per tal de poder definir casos per defecte i excepcions. Els mecanismes de seguretat de MPEG-G protegeixen la informació durant el transport i l'accés. Una vegada l’usuari ha accedit a les dades, les podria publicar. Per tal d'identificar qui és l'origen del filtratge de dades, proposem un algoritme que genera modificacions úniques i virtualment no detectables. La nostra solució és pionera, ja que els canvis es poden desfer si el secret corresponent és publicat. Per tant, la utilitat de les dades és mantinguda. Demostrem que combinant varis secrets, podem evitar col·lusions. L'API seleccionada per MPEG-G, considera criteris de cerca que no són presents en les taules d’indexació. Basant-nos en aquesta API, hem desenvolupat una solució. És basada en un marc de col·laboració, on la combinació de les necessitats dels diferents usuaris i els requeriments de privacitat del pacient, es combinen en una representació ad-hoc que optimitza temps d’accessos tot i garantint la privacitat i autenticitat de les dades. La majoria de les nostres propostes s’han inclòs a la versió final de l'estàndard, fusionant-les amb altres proposes (com amb el format del fitxer), demostrant la seva superioritat (com amb els mecanismes de seguretat), i fins i tot sent acceptades directament (com amb les regles de privacitat)

    Security strategies in genomic files

    Get PDF
    There are new mechanisms to sequence and process the genomic code, discovering thus diagnostic tools and treatments. The file for a sequenced genome can reach hundreds of gigabytes. Thus, for further studies, we need new means to compress the information and a standardized representation to simplify the development of new tools. The ISO standardization group MPEG has used its expertise in compressing multimedia content to compress genomic information and develop its ´MPEG-G standard’. Given the sensitivity of the data, security is a major identified requirement. This thesis proposes novel technologies that assure the security of both the sequenced data and its metadata. We define a container-based file format to group data, metadata, and security information at the syntactical level. It includes new features like grouping multiple results in a same file to simplify the transport of whole studies. We use the granularity of the encoder’s output to enhance security. The information is represented in units, each dedicated to a specific region of the genome, which allows to provide encryption and signature features on a region base. We analyze the trade-off between security and an even more fine-grained approach and prove that apparently secure settings can be insecure: if the file creator may encrypt only specific elements of a unit, cross-checking unencrypted information permits to infer encrypted content. Most of the proposals for MPEG-G coming from other research groups and companies focused on data compression and representation. However, the need was recognized to find a solution for metadata encoding. Our proposal was included in the standard: an XML-based solution, separated in a core specification and extensions. It permits to adapt the metadata schema to the different genomic repositories' frameworks, without importing requirements from one framework to another. To simplify the handling of the resulting metadata, we define profiles, i.e. lists of extensions that must be present in a given framework. We use XML signature and XML encryption for metadata security. The MPEG requirements also concern access rules. Our privacy solutions limit the range of persons with access and we propose access rules represented with XACML to convey under which circumstances a user is granted access to a specific action among the ones specified in MPEG-G's API, e.g. filtering data by attributes. We also specify algorithms to combine multiple rules by defining default behaviors and exceptions. The standard’s security mechanisms protect the information only during transport and access. Once the data is obtained, the user could publish it. In order to identify leakers, we propose an algorithm that generates unique, virtually undetectable variations. Our solution is novel as the marking can be undone (and the utility of the data preserved) if the corresponding secret key is revealed. We also show how to combine multiple secret keys to avoid collusion. The API retained for MPEG-G considers search criteria not present in the indexing tables, which highlights shortcomings. Based on the proposed MPEG-G API we have developed a solution. It is based on a collaboration framework where the different users' needs and the patient's privacy settings result in a purpose-built file format that optimizes query times and provides privacy and authenticity on the patient-defined genomic regions. The encrypted output units are created and indexed to optimize query times and avoid rarely used indexing fields. Our approach resolves the shortcomings of MPEG-G's indexing strategy. We have submitted our technologies to the MPEG standardization committee. Many have been included in the final standard, via merging with other proposals (e.g. file format), discussion (e.g. security mechanisms), or direct acceptance (e.g. privacy rules).Hi han nous mètodes per la seqüenciació i el processament del codi genòmic, permetent descobrir eines de diagnòstic i tractaments en l’àmbit mèdic. El resultat de la seqüenciació d’un genoma es representa en un fitxer, que pot ocupar centenars de gigabytes. Degut a això, hi ha una necessitat d’una representació estandarditzada on la informació és comprimida. Dins de la ISO, el grup MPEG ha fet servir la seva experiència en compressió de dades multimèdia per comprimir dades genòmiques i desenvolupar l'estàndard MPEG-G, sent la seguretat un dels requeriments principals. L'objectiu de la tesi és garantir aquesta seguretat (encriptant, firmant i definint regles d¿ accés) tan per les dades seqüenciades com per les seves metadades. El primer pas és definir com transportar les dades, metadades i paràmetres de seguretat. Especifiquem un format de fitxer basat en contenidors per tal d'agrupar aquets elements a nivell sintàctic. La nostra solució proposa noves funcionalitats com agrupar múltiples resultats en un mateix fitxer. Pel que fa la seguretat de dades, la nostra proposta utilitza les propietats de la sortida del codificador. Aquesta sortida és estructurada en unitats, cadascuna dedicada a una regió concreta del genoma, permetent una encriptació i firma de dades específica a la unitat. Analitzem el compromís entre seguretat i un enfocament de gra més fi demostrant que configuracions aparentment vàlides poden no ser-ho: si es permet encriptar sols certes sub-unitats d'informació, creuant els continguts no encriptats, podem inferir el contingut encriptat. Quant a metadades, proposem una solució basada en XML separada en una especificació bàsica i en extensions. Podem adaptar l'esquema de metadades als diferents marcs de repositoris genòmics, sense imposar requeriments d’un marc a un altre. Per simplificar l'ús, plantegem la definició de perfils, és a dir, una llista de les extensions que han de ser present per un marc concret. Fem servir firmes XML i encriptació XML per implementar la seguretat de les metadades. Les nostres solucions per la privacitat limiten qui té accés a les dades, però no en limita l’ús. Proposem regles d’accés representades amb XACML per indicar en quines circumstàncies un usuari té dret d'executar una de les accions especificades a l'API de MPEG-G (per exemple, filtrar les dades per atributs). Presentem algoritmes per combinar regles, per tal de poder definir casos per defecte i excepcions. Els mecanismes de seguretat de MPEG-G protegeixen la informació durant el transport i l'accés. Una vegada l’usuari ha accedit a les dades, les podria publicar. Per tal d'identificar qui és l'origen del filtratge de dades, proposem un algoritme que genera modificacions úniques i virtualment no detectables. La nostra solució és pionera, ja que els canvis es poden desfer si el secret corresponent és publicat. Per tant, la utilitat de les dades és mantinguda. Demostrem que combinant varis secrets, podem evitar col·lusions. L'API seleccionada per MPEG-G, considera criteris de cerca que no són presents en les taules d’indexació. Basant-nos en aquesta API, hem desenvolupat una solució. És basada en un marc de col·laboració, on la combinació de les necessitats dels diferents usuaris i els requeriments de privacitat del pacient, es combinen en una representació ad-hoc que optimitza temps d’accessos tot i garantint la privacitat i autenticitat de les dades. La majoria de les nostres propostes s’han inclòs a la versió final de l'estàndard, fusionant-les amb altres proposes (com amb el format del fitxer), demostrant la seva superioritat (com amb els mecanismes de seguretat), i fins i tot sent acceptades directament (com amb les regles de privacitat)
    corecore