697 research outputs found

    Deep Learning-based Solutions to Improve Diagnosis in Wireless Capsule Endoscopy

    Full text link
    [eng] Deep Learning (DL) models have gained extensive attention due to their remarkable performance in a wide range of real-world applications, particularly in computer vision. This achievement, combined with the increase in available medical records, has made it possible to open up new opportunities for analyzing and interpreting healthcare data. This symbiotic relationship can enhance the diagnostic process by identifying abnormalities, patterns, and trends, resulting in more precise, personalized, and effective healthcare for patients. Wireless Capsule Endoscopy (WCE) is a non-invasive medical imaging technique used to visualize the entire Gastrointestinal (GI) tract. Up to this moment, physicians meticulously review the captured frames to identify pathologies and diagnose patients. This manual process is time- consuming and prone to errors due to the challenges of interpreting the complex nature of WCE procedures. Thus, it demands a high level of attention, expertise, and experience. To overcome these drawbacks, shorten the screening process, and improve the diagnosis, efficient and accurate DL methods are required. This thesis proposes DL solutions to the following problems encountered in the analysis of WCE studies: pathology detection, anatomical landmark identification, and Out-of-Distribution (OOD) sample handling. These solutions aim to achieve robust systems that minimize the duration of the video analysis and reduce the number of undetected lesions. Throughout their development, several DL drawbacks have appeared, including small and imbalanced datasets. These limitations have also been addressed, ensuring that they do not hinder the generalization of neural networks, leading to suboptimal performance and overfitting. To address the previous WCE problems and overcome the DL challenges, the proposed systems adopt various strategies that utilize the power advantage of Triplet Loss (TL) and Self-Supervised Learning (SSL) techniques. Mainly, TL has been used to improve the generalization of the models, while SSL methods have been employed to leverage the unlabeled data to obtain useful representations. The presented methods achieve State-of-the-art results in the aforementioned medical problems and contribute to the ongoing research to improve the diagnostic of WCE studies.[cat] Els models d’aprenentatge profund (AP) han acaparat molta atenció a causa del seu rendiment en una àmplia gamma d'aplicacions del món real, especialment en visió per ordinador. Aquest fet, combinat amb l'increment de registres mèdics disponibles, ha permès obrir noves oportunitats per analitzar i interpretar les dades sanitàries. Aquesta relació simbiòtica pot millorar el procés de diagnòstic identificant anomalies, patrons i tendències, amb la conseqüent obtenció de diagnòstics sanitaris més precisos, personalitzats i eficients per als pacients. La Capsula endoscòpica (WCE) és una tècnica d'imatge mèdica no invasiva utilitzada per visualitzar tot el tracte gastrointestinal (GI). Fins ara, els metges revisen minuciosament els fotogrames capturats per identificar patologies i diagnosticar pacients. Aquest procés manual requereix temps i és propens a errors. Per tant, exigeix un alt nivell d'atenció, experiència i especialització. Per superar aquests inconvenients, reduir la durada del procés de detecció i millorar el diagnòstic, es requereixen mètodes eficients i precisos d’AP. Aquesta tesi proposa solucions que utilitzen AP per als següents problemes trobats en l'anàlisi dels estudis de WCE: detecció de patologies, identificació de punts de referència anatòmics i gestió de mostres que pertanyen fora del domini. Aquestes solucions tenen com a objectiu aconseguir sistemes robustos que minimitzin la durada de l'anàlisi del vídeo i redueixin el nombre de lesions no detectades. Durant el seu desenvolupament, han sorgit diversos inconvenients relacionats amb l’AP, com ara conjunts de dades petits i desequilibrats. Aquestes limitacions també s'han abordat per assegurar que no obstaculitzin la generalització de les xarxes neuronals, evitant un rendiment subòptim. Per abordar els problemes anteriors de WCE i superar els reptes d’AP, els sistemes proposats adopten diverses estratègies que aprofiten l'avantatge de la Triplet Loss (TL) i les tècniques d’auto-aprenentatge. Principalment, s'ha utilitzat TL per millorar la generalització dels models, mentre que els mètodes d’autoaprenentatge s'han emprat per aprofitar les dades sense etiquetar i obtenir representacions útils. Els mètodes presentats aconsegueixen bons resultats en els problemes mèdics esmentats i contribueixen a la investigació en curs per millorar el diagnòstic dels estudis de WCE

    New Techniques in Gastrointestinal Endoscopy

    Get PDF
    As result of progress, endoscopy has became more complex, using more sophisticated devices and has claimed a special form. In this moment, the gastroenterologist performing endoscopy has to be an expert in macroscopic view of the lesions in the gut, with good skills for using standard endoscopes, with good experience in ultrasound (for performing endoscopic ultrasound), with pathology experience for confocal examination. It is compulsory to get experience and to have patience and attention for the follow-up of thousands of images transmitted during capsule endoscopy or to have knowledge in physics necessary for autofluorescence imaging endoscopy. Therefore, the idea of an endoscopist has changed. Examinations mentioned need a special formation, a superior level of instruction, accessible to those who have already gained enough experience in basic diagnostic endoscopy. This is the reason for what these new issues of endoscopy are presented in this book of New techniques in Gastrointestinal Endoscopy

    Multi-pathology detection and lesion localization in WCE videos by using the instance segmentation approach

    Get PDF
    The majority of current systems for automatic diagnosis considers the detection of a unique and previously known pathology. Considering specifically the diagnosis of lesions in the small bowel using endoscopic capsule images, very few consider the possible existence of more than one pathology and when they do, they are mainly detection based systems therefore unable to localize the suspected lesions. Such systems do not fully satisfy the medical community, that in fact needs a system that detects any pathology and eventually more than one, when they coexist. In addition, besides the diagnostic capability of these systems, localizing the lesions in the image has been of great interest to the medical community, mainly for training medical personnel purposes. So, nowadays, the inclusion of the lesion location in automatic diagnostic systems is practically mandatory. Multi-pathology detection can be seen as a multi-object detection task and as each frame can contain different instances of the same lesion, instance segmentation seems to be appropriate for the purpose. Consequently, we argue that a multi-pathology system benefits from using the instance segmentation approach, since classification and segmentation modules are both required complementing each other in lesion detection and localization. According to our best knowledge such a system does not yet exist for the detection of WCE pathologies. This paper proposes a multi-pathology system that can be applied to WCE images, which uses the Mask Improved RCNN (MI-RCNN), a new mask subnet scheme which has shown to significantly improve mask predictions of the high performing state-of-the-art Mask-RCNN and PANet systems. A novel training strategy based on the second momentum is also proposed for the first time for training Mask-RCNN and PANet based systems. These approaches were tested using the public database KID, and the included pathologies were bleeding, angioectasias, polyps and inflammatory lesions. Experimental results show significant improvements for the prFCT national funds, under the national support to R&D units grant, through the reference project UIDB/04436/2020 and UIDP/04436/2020 and through the PhD Grants with the references SFRH/BD/92143/2013 and SFRH/BD/139061/201

    Supervised cnn strategies for optical image segmentation and classification in interventional medicine

    Get PDF
    The analysis of interventional images is a topic of high interest for the medical-image analysis community. Such an analysis may provide interventional-medicine professionals with both decision support and context awareness, with the final goal of improving patient safety. The aim of this chapter is to give an overview of some of the most recent approaches (up to 2018) in the field, with a focus on Convolutional Neural Networks (CNNs) for both segmentation and classification tasks. For each approach, summary tables are presented reporting the used dataset, involved anatomical region and achieved performance. Benefits and disadvantages of each approach are highlighted and discussed. Available datasets for algorithm training and testing and commonly used performance metrics are summarized to offer a source of information for researchers that are approaching the field of interventional-image analysis. The advancements in deep learning for medical-image analysis are involving more and more the interventional-medicine field. However, these advancements are undeniably slower than in other fields (e.g. preoperative-image analysis) and considerable work still needs to be done in order to provide clinicians with all possible support during interventional-medicine procedures

    Detection of Intestinal Bleeding in Wireless Capsule Endoscopy using Machine Learning Techniques

    Get PDF
    Gastrointestinal (GI) bleeding is very common in humans, which may lead to fatal consequences. GI bleeding can usually be identified using a flexible wired endoscope. In 2001, a newer diagnostic tool, wireless capsule endoscopy (WCE) was introduced. It is a swallow-able capsule-shaped device with a camera that captures thousands of color images and wirelessly sends those back to a data recorder. After that, the physicians analyze those images in order to identify any GI abnormalities. But it takes a longer screening time which may increase the danger of the patients in emergency cases. It is therefore necessary to use a real-time detection tool to identify bleeding in the GI tract. Each material has its own spectral ‘signature’ which shows distinct characteristics in specific wavelength of light [33]. Therefore, by evaluating the optical characteristics, the presence of blood can be detected. In the study, three main hardware designs were presented: one using a two-wavelength based optical sensor and others using two six-wavelength based spectral sensors with AS7262 and AS7263 chips respectively to determine the optical characteristics of the blood and non-blood samples. The goal of the research is to develop a machine learning model to differentiate blood samples (BS) and non-blood samples (NBS) by exploring their optical properties. In this experiment, 10 levels of crystallized bovine hemoglobin solutions were used as BS and 5 food colors (red, yellow, orange, tan and pink) with different concentrations totaling 25 non-blood samples were used as NBS. These blood and non-blood samples were also combined with pig’s intestine to mimic in-vivo experimental environment. The collected samples were completely separated into training and testing data. Different spectral features are analyzed to obtain the optical information about the samples. Based on the performance on the selected most significant features of the spectral wavelengths, k-nearest neighbors algorithm (k-NN) is finally chosen for the automated bleeding detection. The proposed k-NN classifier model has been able to distinguish the BS and NBS with an accuracy of 91.54% using two wavelengths features and around 89% using three combined wavelengths features in the visible and near-infrared spectral regions. The research also indicates that it is possible to deploy tiny optical detectors to detect GI bleeding in a WCE system which could eliminate the need of time-consuming image post-processing steps

    Performance clínica de um novo software para detetar automaticamente angiectasias na endoscopia por cápsula

    Get PDF
    Background: Video capsule endoscopy (VCE) revolutionized the diagnosis and management of obscure gastrointestinal bleeding, though the rate of detection of small bowel lesions by the physician is still disappointing. Our group developed a novel algorithm (CMEMS-Uminho) to automatically detect angioectasias which display greater accuracy in VCE static frames than other methods previously published. We aimed to evaluate the algorithm overall performance and assess its diagnostic yield and usability in clinical practice. Methods: Algorithm overall performance was determined using 54 full-length VCE recordings. To assess its diagnostic yield and usability in clinical practice, 38 VCE examinations with the clinical diagnosis of angioectasias consecutively performed (2017-2018) were evaluated by three physicians with different experiences. The CMEMS-Uminho algorithm was also applied. The performance of the CMEMS-Uminho algorithm was defined by a positive concordance between a frame automatically selected by the software and a study independent capsule endoscopist. Results: Overall performance in complete VCE recordings was 77.7%, and diagnostic yield was 94.7%. There were significant differences between physicians in regard to global detection rate (p < 0.001), detection rate per capsule (p < 0.001), diagnostic yield (p = 0.007), true positive rate (p < 0.001), time (p < 0.001), and speed viewing (p < 0.001). The application of CMEMS-Uminho algorithm significantly enhanced all readers' global detection rate (p < 0.001) and the differences between them were no longer observed. Conclusion: The CMEMS-Uminho algorithm detained a good overall performance and was able to enhance physicians' performance, suggesting a potential usability of this tool in clinical practice.(undefined
    • …
    corecore