10,206 research outputs found

    Automatic large-scale three dimensional modeling using cooperative multiple robots

    Get PDF
    Abstract3D modeling of real objects by a 3D laser scanner has become popular in many applications, such as reverse engineering of petrochemical plants, civil engineering and construction, and digital preservation of cultural properties. Despite the development of lightweight and high-speed laser scanners, the complicated measurement procedure and long measurement time are still heavy burdens for widespread use of laser scanning. To solve these problems, a robotic 3D scanning system using multiple robots has been proposed. This system, named CPS-SLAM, consists of a parent robot with a 3D laser scanner and child robots with target markers. A large-scale 3D model is acquired by an on-board 3D laser scanner on the parent robot from several positions determined precisely by a localization technique, named the Cooperative Positioning System (CPS), that uses multiple robots. Therefore, this system can build a 3D model without complicated post-processing procedures such as ICP. In addition, this system is an open-loop SLAM system and a very precise 3D model can be obtained without closed loops. This paper proposes an automatic planning technique for a laser measurement by using CPS-SLAM. Planning a proper scanning strategy depending on a target structure makes it possible to perform laser scanning efficiently and accurately even for a large-scale and complex environment. The proposed technique plans an efficient scanning strategy automatically by taking account of several criteria, such as visibility between robots, error accumulation, and efficient traveling. We conducted computer simulations and outdoor experiments to verify the performance of the proposed technique

    Unmanned Aerial Systems for Wildland and Forest Fires

    Full text link
    Wildfires represent an important natural risk causing economic losses, human death and important environmental damage. In recent years, we witness an increase in fire intensity and frequency. Research has been conducted towards the development of dedicated solutions for wildland and forest fire assistance and fighting. Systems were proposed for the remote detection and tracking of fires. These systems have shown improvements in the area of efficient data collection and fire characterization within small scale environments. However, wildfires cover large areas making some of the proposed ground-based systems unsuitable for optimal coverage. To tackle this limitation, Unmanned Aerial Systems (UAS) were proposed. UAS have proven to be useful due to their maneuverability, allowing for the implementation of remote sensing, allocation strategies and task planning. They can provide a low-cost alternative for the prevention, detection and real-time support of firefighting. In this paper we review previous work related to the use of UAS in wildfires. Onboard sensor instruments, fire perception algorithms and coordination strategies are considered. In addition, we present some of the recent frameworks proposing the use of both aerial vehicles and Unmanned Ground Vehicles (UV) for a more efficient wildland firefighting strategy at a larger scale.Comment: A recent published version of this paper is available at: https://doi.org/10.3390/drones501001

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved

    Safe, Remote-Access Swarm Robotics Research on the Robotarium

    Get PDF
    This paper describes the development of the Robotarium -- a remotely accessible, multi-robot research facility. The impetus behind the Robotarium is that multi-robot testbeds constitute an integral and essential part of the multi-agent research cycle, yet they are expensive, complex, and time-consuming to develop, operate, and maintain. These resource constraints, in turn, limit access for large groups of researchers and students, which is what the Robotarium is remedying by providing users with remote access to a state-of-the-art multi-robot test facility. This paper details the design and operation of the Robotarium as well as connects these to the particular considerations one must take when making complex hardware remotely accessible. In particular, safety must be built in already at the design phase without overly constraining which coordinated control programs the users can upload and execute, which calls for minimally invasive safety routines with provable performance guarantees.Comment: 13 pages, 7 figures, 3 code samples, 72 reference

    Laser-based geometric modeling using cooperative multiple mobile robots

    Full text link
    Abstract—In order to construct three-dimensional shape models of large-scale architectural structures using a laser range finder, a number of range images are taken from various viewpoints. These images are aligned using post-processing procedures such as the ICP algorithm. However, in general, before applying the ICP algorithm, these range images must be aligned roughly by a human operator in order to converge to precise positions. The present paper proposes a new modeling system using a group of multiple robots and an on-board laser range finder. Each measurement position is identified by a highly precise positioning technique called Cooperative Positioning System (CPS), which utilizes the characteristics of the multiple-robot system. Thus, the proposed system can construct 3D shapes of large-scale architectural structures without any post-processing procedure or manual registration. ICP is applied optionally for a subsequent refinement of the model. Measurement experiments in unknown and large indoor/outdoor environments are carried out successfully using the newly developed measurement system consisting of three mobile robots named CPS-V. Generating a model of Dazaifu Tenmangu, a famous cultural heritage, for its digital archive completes the paper. I

    Technology assessment of advanced automation for space missions

    Get PDF
    Six general classes of technology requirements derived during the mission definition phase of the study were identified as having maximum importance and urgency, including autonomous world model based information systems, learning and hypothesis formation, natural language and other man-machine communication, space manufacturing, teleoperators and robot systems, and computer science and technology
    • …
    corecore