2,354 research outputs found

    The integration of geometric information within design and manufacture

    Get PDF
    Imperial Users onl

    Repair of metallic components using hybrid manufacturing

    Get PDF
    Many high-performance metal parts users extend the service of these damaged parts by employing repair technology. Hybrid manufacturing, which includes additive manufacturing (AM) and subtractive manufacturing, provides greater build capability, better accuracy, and surface finish for component repair. However, most repair processes still rely on manual operations, which are not satisfactory in terms of time, cost, reliability, and accuracy. This dissertation aims to improve the application of hybrid manufacturing for repairing metallic components by addressing the following three research topics. The first research topic is to investigate and develop an efficient best-fit and shape adaption algorithm for automating 3D models\u27 the alignment and defect reconstruction. A multi-feature fitting algorithm and cross-section comparison method are developed. The second research topic is to develop a smooth toolpath generation method for laser metal deposition to improve the deposition quality for metallic component fabrication and repair. Smooth connections or transitions in toolpath planning are achieved to provide a constant feedrate and controllable deposition idle time for each single deposition pass. The third research topic is to develop an automated repair process could efficiently obtain the spatial information of a worn component for defect detection, alignment, and 3D scanning with the integration of stereo vision and laser displacement sensor. This dissertation investigated and developed key technologies to improve the efficiency, repair quality, precision, and automation for the repair of metallic components using hybrid manufacturing. Moreover, the research results of this dissertation can benefit a wide range of industries, such as additive manufacturing, manufacturing and measurement automation, and part inspection --Abstract, page iv

    Latest Developments in Industrial Hybrid Machine Tools that Combine Additive and Subtractive Operations

    Get PDF
    Hybrid machine tools combining additive and subtractive processes have arisen as a solution to increasing manufacture requirements, boosting the potentials of both technologies, while compensating and minimizing their limitations. Nevertheless, the idea of hybrid machines is relatively new and there is a notable lack of knowledge about the implications arisen from their in-practice use. Therefore, the main goal of the present paper is to fill the existing gap, giving an insight into the current advancements and pending tasks of hybrid machines both from an academic and industrial perspective. To that end, the technical-economical potentials and challenges emerging from their use are identified and critically discussed. In addition, the current situation and future perspectives of hybrid machines from the point of view of process planning, monitoring, and inspection are analyzed. On the one hand, it is found that hybrid machines enable a more efficient use of the resources available, as well as the production of previously unattainable complex parts. On the other hand, it is concluded that there are still some technological challenges derived from the interaction of additive and subtractive processes to be overcome (e.g., process planning, decision planning, use of cutting fluids, and need for a post-processing) before a full implantation of hybrid machines is fulfilledSpecial thanks are addressed to the Industry and Competitiveness Spanish Ministry for the support on the DPI2016-79889-R INTEGRADDI project and to the PARADDISE project H2020-IND-CE-2016-17/H2020-FOF-2016 of the European Union's Horizon 2020 research and innovation program

    Automated Plasma Spray (APS) process feasibility study

    Get PDF
    An automated plasma spray (APS) process was developed to apply two layer (NiCrAlY and ZrO2-12Y2O3) thermal barrier coatings to aircraft and stationary gas turbine engine blade airfoils. The APS process hardware consists of four subsystems: a mechanical positioning subsystem incorporating two interlaced six degree of freedom assemblies (one for coating deposition and one for coating thickness monitoring); a noncoherent optical metrology subsystem (for in process gaging of the coating thickness buildup at specified points on the specimen); a microprocessor based adaptive system controller (to achieve the desired overall thickness profile on the specimen); and commerical plasma spray equipment. Over fifty JT9D first stage aircraft turbine blade specimens, ten W501B utility turbine blade specimens and dozens of cylindrical specimens were coated with the APS process in preliminary checkout and evaluation studies. The best of the preliminary turbine blade specimens achieved an overall coating thickness uniformity of 53 micrometers (2.1 mils), much better than is achievable manually. Comparative evaluations of coating thickness uniformity for manually sprayed and APS coated specimens were performed. One of the preliminary turbine blade evaluation specimens was subjected to a torch test and metallographic evaluation. Some cylindrical specimens coated with the APS process survived up to 2000 cycles in subsequent burner rig testing

    Large Volume Metrology Assisted Production of Aero-structures

    Get PDF

    Development of a Software Tool to Estimate Airfoil Feature Variations

    Get PDF
    The objective of this thesis is to design and develop a software tool that analyzes the incoming raw material inspection data obtained from a Coordinate Measuring Machine (CMM) and estimates feature variation created within the manufacturing process i.e. from the raw material stage to finished stage. This tool is used not only to disposition whether a lot is conforming or non-conforming, but also to provide the root installation operators an ideal N-angle, Leading Edge Angle (LEA) and Trailing Edge Angle (TEA) target that maximize the yield of the lot after further processing. The tool also helps reduce the number of airfoil sections which need to be inspected both at In-Process and Final CMM inspection stages, thereby saving a considerable amount of inspection time as well as providing estimated cost savings of over a million dollars a year to the business

    Remanufacturing of precision metal components using additive manufacturing technology

    Get PDF
    Critical metallic components such as jet engine turbine blades and casting die/mold may be damaged after servicing for a period at harsh working environments such as elevated temperature and pressure, impact with foreign objects, wear, corrosion, and fatigue. Additive manufacturing has a promising application for the refurbishment of such high-costly parts by depositing materials at the damaged zone to restore the nominal geometry. However, several issues such as pre-processing of worn parts to assure the repairability, reconstructing the repair volume to generate a repair tool path for material deposition, and inspection of repaired parts are challenging. The current research aims to address crucial issues associated with component repair based on three research topics. The first topic is focusing on the development of pre-repair processing strategies which includes pre-repair machining to guarantee the damaged parts are ready for material deposition and pre-repair heat-treatment to restore the nominal mechanical properties. For this purpose, some damaged parts with varied defects were processed based on the proposed strategies. The second topic presents algorithms for obtaining the repair volume on damaged parts by comparing the damaged 3D models with the nominal models. Titanium compressor blades and die/mold were used as case studies to illustrate the damage detection and reconstructing algorithms. The third topic is the evaluation of repaired components through material inspection and mechanical testing to make sure the repair is successful. The current research contributes to metallic component remanufacturing by providing knowledge to solve key issues coupled with repair. Moreover, the research results could benefit a wide range of industries, such as aerospace, automotive, biomedical, and die casting --Abstract, page iv

    Compensation of part distortion in process design for re-contouring processes

    Get PDF
    The repair of compressor blades requires a precise coordination of the material deposit and the subsequent re-contouring process. Since re-contouring is the last step in the process chain, it is a crucial stage for the final part quality and shape. Therefore, machining-induced part distortions must be considered in process design. This paper introduces a method for the simulation-based compensation of part distortions. The method combines process planning and evaluation by means of a geometric simulation. In order to validate the approach, milling experiments are carried out. A subsequent measurement of the part geometry shows that the part distortion can be reduced by up to 21% using the presented approach. © 2019 The Authors. Published by Elsevier Ltd
    • …
    corecore