232 research outputs found

    Advancements and Breakthroughs in Ultrasound Imaging

    Get PDF
    Ultrasonic imaging is a powerful diagnostic tool available to medical practitioners, engineers and researchers today. Due to the relative safety, and the non-invasive nature, ultrasonic imaging has become one of the most rapidly advancing technologies. These rapid advances are directly related to the parallel advancements in electronics, computing, and transducer technology together with sophisticated signal processing techniques. This book focuses on state of the art developments in ultrasonic imaging applications and underlying technologies presented by leading practitioners and researchers from many parts of the world

    Software and Hardware-based Tools for Improving Ultrasound Guided Prostate Brachytherapy

    Get PDF
    Minimally invasive procedures for prostate cancer diagnosis and treatment, including biopsy and brachytherapy, rely on medical imaging such as two-dimensional (2D) and three-dimensional (3D) transrectal ultrasound (TRUS) and magnetic resonance imaging (MRI) for critical tasks such as target definition and diagnosis, treatment guidance, and treatment planning. Use of these imaging modalities introduces challenges including time-consuming manual prostate segmentation, poor needle tip visualization, and variable MR-US cognitive fusion. The objective of this thesis was to develop, validate, and implement software- and hardware-based tools specifically designed for minimally invasive prostate cancer procedures to overcome these challenges. First, a deep learning-based automatic 3D TRUS prostate segmentation algorithm was developed and evaluated using a diverse dataset of clinical images acquired during prostate biopsy and brachytherapy procedures. The algorithm significantly outperformed state-of-the-art fully 3D CNNs trained using the same dataset while a segmentation time of 0.62 s demonstrated a significant reduction compared to manual segmentation. Next, the impact of dataset size, image quality, and image type on segmentation performance using this algorithm was examined. Using smaller training datasets, segmentation accuracy was shown to plateau with as little as 1000 training images, supporting the use of deep learning approaches even when data is scarce. The development of an image quality grading scale specific to 3D TRUS images will allow for easier comparison between algorithms trained using different datasets. Third, a power Doppler (PD) US-based needle tip localization method was developed and validated in both phantom and clinical cases, demonstrating reduced tip error and variation for obstructed needles compared to conventional US. Finally, a surface-based MRI-3D TRUS deformable image registration algorithm was developed and implemented clinically, demonstrating improved registration accuracy compared to manual rigid registration and reduced variation compared to the current clinical standard of physician cognitive fusion. These generalizable and easy-to-implement tools have the potential to improve workflow efficiency and accuracy for minimally invasive prostate procedures

    Investigation of diagnostic value of artificial intelligence systems in the diagnosis of breast cancer based on histopathological images using Meta-MUMS DTA tool

    Get PDF
    ORIGINAL ARTICLES Epidemiology Biostatistics and Public Health - 2020, Volume 17, Number 2Investigation of diagnostic value of artificial intelligence systems in the diagnosis of breast cancer based on histopathological images using Meta-MUMS DTA toolInvestigation of diagnostic value of artificialintelligence systems in the diagnosis of breastcancer based on histopathological imagesusing Meta-MUMS DTA toolABSTRACTBackground: Various artificial intelligence systems are available for diagnosing breast cancer based onhistopathological images. Assessing the performance of existing methodologies for breast cancer diagnosis is vital.Methods: The SCOPUS database has been searched for studies up to December 15, 2018. We extracted the data,including "true positive," "true negative," "false positive," and "false negative". The pooled sensitivity, pooled specificity,positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio, area under the curve of summary receiveroperating characteristic curve were useful in assessing the diagnostic accuracy. Egger's test, Deeks' funnel plot, SVE(Smoothed Variance regression model based on Egger’s test), SVT (Smoothed Variance regression model based onThompson’s method), and trim and fill methodologies were essential tests for publication bias identification.Results: Three studies with eight approaches from thirty-seven articles were found eligible for further analysis. Asensitivity of 0.95, a specificity of 0.78, a PLR of 7525, an NLR of 0.06, a DOR of 88.15, and an AUC of 0.953showed high significant heterogeneity; however, the reason was not the threshold effect. The publication bias wasdetected by SVE, SVT, and trim and fill analysis.Conclusion: The artificial intelligent (AI) systems play a pivotal role in the diagnosis of breast cancer usinghistopathological cell images and are important decision-makers for pathologists. The analyses revealed that theoverall accuracy of AI systems is promising for breast cancer; however, the pooled specificity is lower than pooledsensitivity. Moreover, the approval of the results awaits conducting randomized clinical trials with sufficient dat

    Trans-Rectal Optical Tomography Reconstruction Using 3-Dimensional Spatial Prior Extracted From Sparse 2-Dimensional Trans-Rectal Ultrasound Imagery

    Get PDF
    Accurate prostate segmentation in trans-rectal ultrasound (TRUS) imagery is an important step in different clinical applications, and it is particularly necessary for providing a 3-dimensional spatial prior to guide the image reconstruction of trans-rectal optical tomography for prostate cancer detection. Utilizing the US prior to guide near infrared tomography reconstruction could be performed by direct segmentation of the US image. Therefore, 2-dimensional segmentation of the axial TRUS images are performed extensively, however, 2-dimensional segmentation of the sagittal TRUS images are challenging, due to more complexities in contrast, morphological features and image artifacts, as well as significant inter-subject variations of the prostate shape and size. We develop a routine of segmenting 2-dimensional TRUS images obtained from canine prostate, based on the combination of a Snake's algorithm and selected manual segmentation. The segmentations obtained from a sparse set of axial and sagittal images are aligned to form the 3-dimensional contour of a prostate. The resulted prostate profile is implemented as the spatial prior to constrain image reconstruction of trans-rectal optical tomography. The trans-rectal optical tomography images reconstructed with the prostate profile prior are compared with those reconstructed without any spatial prior by monitoring oxygen saturation (StO2) and total hemoglobin concentration ([HbT]) in lesions of a canine prostate.Electrical Engineerin

    Computational methods to predict and enhance decision-making with biomedical data.

    Get PDF
    The proposed research applies machine learning techniques to healthcare applications. The core ideas were using intelligent techniques to find automatic methods to analyze healthcare applications. Different classification and feature extraction techniques on various clinical datasets are applied. The datasets include: brain MR images, breathing curves from vessels around tumor cells during in time, breathing curves extracted from patients with successful or rejected lung transplants, and lung cancer patients diagnosed in US from in 2004-2009 extracted from SEER database. The novel idea on brain MR images segmentation is to develop a multi-scale technique to segment blood vessel tissues from similar tissues in the brain. By analyzing the vascularization of the cancer tissue during time and the behavior of vessels (arteries and veins provided in time), a new feature extraction technique developed and classification techniques was used to rank the vascularization of each tumor type. Lung transplantation is a critical surgery for which predicting the acceptance or rejection of the transplant would be very important. A review of classification techniques on the SEER database was developed to analyze the survival rates of lung cancer patients, and the best feature vector that can be used to predict the most similar patients are analyzed

    Deep Learning in Breast Cancer Imaging: A Decade of Progress and Future Directions

    Full text link
    Breast cancer has reached the highest incidence rate worldwide among all malignancies since 2020. Breast imaging plays a significant role in early diagnosis and intervention to improve the outcome of breast cancer patients. In the past decade, deep learning has shown remarkable progress in breast cancer imaging analysis, holding great promise in interpreting the rich information and complex context of breast imaging modalities. Considering the rapid improvement in the deep learning technology and the increasing severity of breast cancer, it is critical to summarize past progress and identify future challenges to be addressed. In this paper, we provide an extensive survey of deep learning-based breast cancer imaging research, covering studies on mammogram, ultrasound, magnetic resonance imaging, and digital pathology images over the past decade. The major deep learning methods, publicly available datasets, and applications on imaging-based screening, diagnosis, treatment response prediction, and prognosis are described in detail. Drawn from the findings of this survey, we present a comprehensive discussion of the challenges and potential avenues for future research in deep learning-based breast cancer imaging.Comment: Survey, 41 page

    Advanced Sensing and Image Processing Techniques for Healthcare Applications

    Get PDF
    This Special Issue aims to attract the latest research and findings in the design, development and experimentation of healthcare-related technologies. This includes, but is not limited to, using novel sensing, imaging, data processing, machine learning, and artificially intelligent devices and algorithms to assist/monitor the elderly, patients, and the disabled population

    Medical image analysis methods for anatomical surface reconstruction using tracked 3D ultrasound

    Get PDF
    The thesis focuses on a study of techniques for acquisition and reconstruction of surface data from anatomical objects by means of tracked 3D ultrasound. In the context of the work two experimental scanning systems are developed and tested on both artificial objects and biological tissues. The first system is based on the freehand ultrasound principle and utilizes a conventional 2D ultrasound transducer coupled with an electromechanical 3D position tracker. The main properties and the basic features of this system are discussed. A number of experiments show that its accuracy in the close to ideal conditions reaches 1.2 mm RMS. The second proposed system implements the sequential triggered scanning approach. The system consists of an ultrasound machine, a workstation and a scanning body (a moving tank filled with liquid and a transducer fixation block) that performs transducer positioning and tracking functions. The system is tested on artificial and real bones. The performed experiments illustrate that it provides significantly better accuracy than the freehand ultrasound (about 0.2 mm RMS) and allows acquiring regular data with a good precision. This makes such a system a promising tool for orthopaedic and trauma surgeons during contactless X-ray-free examinations of injured extremities. The second major subject of the thesis concerns development of medical image analysis methods for 3D surface reconstruction and 2D object detection. We introduce a method based on mesh-growing surface reconstruction that is designed for noisy and sparse data received from 3D tracked ultrasound scanners. A series of experiments on synthetic and ultrasound data show an appropriate reconstruction accuracy. The reconstruction error is measured as the averaged distance between the faces of the mesh and the points from the cloud. Dependently on the initial settings of the method the error varies in range 0.04 - 0.2% for artificial data and 0.3 - 0.7 mm for ultrasound bone data. The reconstructed surfaces correctly interpolate the original point clouds and demonstrate proper smoothness. The next significant problem considered in the work is 2D object detection. Although medical object detection is not integrated into the developed scanning systems, it can be used as a possible further extension of the systems for automatic detection of specific anatomical structures. We analyse the existent object detection methods and introduce a modification of the one based on the popular Generalized Hough Transform (GHT). Unlike the original GHT, the developed method is invariant to rotation and uniform scaling, and uses an intuitive two-point parametrization. We propose several implementations of the feature-to-vote conversion function with the corresponding vote analysis principles. Special attention is devoted to a study of the hierarchical vote analysis and its probabilistic properties. We introduce a parameter space subdivision strategy that reduces the probability of vote peak omission, and show that it can be efficiently implemented in practice using the Gumbel probability distribution
    • …
    corecore