3,834 research outputs found

    Hybrid image representation methods for automatic image annotation: a survey

    Get PDF
    In most automatic image annotation systems, images are represented with low level features using either global methods or local methods. In global methods, the entire image is used as a unit. Local methods divide images into blocks where fixed-size sub-image blocks are adopted as sub-units; or into regions by using segmented regions as sub-units in images. In contrast to typical automatic image annotation methods that use either global or local features exclusively, several recent methods have considered incorporating the two kinds of information, and believe that the combination of the two levels of features is beneficial in annotating images. In this paper, we provide a survey on automatic image annotation techniques according to one aspect: feature extraction, and, in order to complement existing surveys in literature, we focus on the emerging image annotation methods: hybrid methods that combine both global and local features for image representation

    Fine-graind Image Classification via Combining Vision and Language

    Full text link
    Fine-grained image classification is a challenging task due to the large intra-class variance and small inter-class variance, aiming at recognizing hundreds of sub-categories belonging to the same basic-level category. Most existing fine-grained image classification methods generally learn part detection models to obtain the semantic parts for better classification accuracy. Despite achieving promising results, these methods mainly have two limitations: (1) not all the parts which obtained through the part detection models are beneficial and indispensable for classification, and (2) fine-grained image classification requires more detailed visual descriptions which could not be provided by the part locations or attribute annotations. For addressing the above two limitations, this paper proposes the two-stream model combining vision and language (CVL) for learning latent semantic representations. The vision stream learns deep representations from the original visual information via deep convolutional neural network. The language stream utilizes the natural language descriptions which could point out the discriminative parts or characteristics for each image, and provides a flexible and compact way of encoding the salient visual aspects for distinguishing sub-categories. Since the two streams are complementary, combining the two streams can further achieves better classification accuracy. Comparing with 12 state-of-the-art methods on the widely used CUB-200-2011 dataset for fine-grained image classification, the experimental results demonstrate our CVL approach achieves the best performance.Comment: 9 pages, to appear in CVPR 201

    Measuring concept similarities in multimedia ontologies: analysis and evaluations

    Get PDF
    The recent development of large-scale multimedia concept ontologies has provided a new momentum for research in the semantic analysis of multimedia repositories. Different methods for generic concept detection have been extensively studied, but the question of how to exploit the structure of a multimedia ontology and existing inter-concept relations has not received similar attention. In this paper, we present a clustering-based method for modeling semantic concepts on low-level feature spaces and study the evaluation of the quality of such models with entropy-based methods. We cover a variety of methods for assessing the similarity of different concepts in a multimedia ontology. We study three ontologies and apply the proposed techniques in experiments involving the visual and semantic similarities, manual annotation of video, and concept detection. The results show that modeling inter-concept relations can provide a promising resource for many different application areas in semantic multimedia processing

    Crowdsourcing in Computer Vision

    Full text link
    Computer vision systems require large amounts of manually annotated data to properly learn challenging visual concepts. Crowdsourcing platforms offer an inexpensive method to capture human knowledge and understanding, for a vast number of visual perception tasks. In this survey, we describe the types of annotations computer vision researchers have collected using crowdsourcing, and how they have ensured that this data is of high quality while annotation effort is minimized. We begin by discussing data collection on both classic (e.g., object recognition) and recent (e.g., visual story-telling) vision tasks. We then summarize key design decisions for creating effective data collection interfaces and workflows, and present strategies for intelligently selecting the most important data instances to annotate. Finally, we conclude with some thoughts on the future of crowdsourcing in computer vision.Comment: A 69-page meta review of the field, Foundations and Trends in Computer Graphics and Vision, 201

    Zero-Annotation Object Detection with Web Knowledge Transfer

    Full text link
    Object detection is one of the major problems in computer vision, and has been extensively studied. Most of the existing detection works rely on labor-intensive supervision, such as ground truth bounding boxes of objects or at least image-level annotations. On the contrary, we propose an object detection method that does not require any form of human annotation on target tasks, by exploiting freely available web images. In order to facilitate effective knowledge transfer from web images, we introduce a multi-instance multi-label domain adaption learning framework with two key innovations. First of all, we propose an instance-level adversarial domain adaptation network with attention on foreground objects to transfer the object appearances from web domain to target domain. Second, to preserve the class-specific semantic structure of transferred object features, we propose a simultaneous transfer mechanism to transfer the supervision across domains through pseudo strong label generation. With our end-to-end framework that simultaneously learns a weakly supervised detector and transfers knowledge across domains, we achieved significant improvements over baseline methods on the benchmark datasets.Comment: Accepted in ECCV 201

    Learning Aerial Image Segmentation from Online Maps

    Get PDF
    This study deals with semantic segmentation of high-resolution (aerial) images where a semantic class label is assigned to each pixel via supervised classification as a basis for automatic map generation. Recently, deep convolutional neural networks (CNNs) have shown impressive performance and have quickly become the de-facto standard for semantic segmentation, with the added benefit that task-specific feature design is no longer necessary. However, a major downside of deep learning methods is that they are extremely data-hungry, thus aggravating the perennial bottleneck of supervised classification, to obtain enough annotated training data. On the other hand, it has been observed that they are rather robust against noise in the training labels. This opens up the intriguing possibility to avoid annotating huge amounts of training data, and instead train the classifier from existing legacy data or crowd-sourced maps which can exhibit high levels of noise. The question addressed in this paper is: can training with large-scale, publicly available labels replace a substantial part of the manual labeling effort and still achieve sufficient performance? Such data will inevitably contain a significant portion of errors, but in return virtually unlimited quantities of it are available in larger parts of the world. We adapt a state-of-the-art CNN architecture for semantic segmentation of buildings and roads in aerial images, and compare its performance when using different training data sets, ranging from manually labeled, pixel-accurate ground truth of the same city to automatic training data derived from OpenStreetMap data from distant locations. We report our results that indicate that satisfying performance can be obtained with significantly less manual annotation effort, by exploiting noisy large-scale training data.Comment: Published in IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSIN
    corecore