770 research outputs found

    Frequency-Aware Model Predictive Control

    Full text link
    Transferring solutions found by trajectory optimization to robotic hardware remains a challenging task. When the optimization fully exploits the provided model to perform dynamic tasks, the presence of unmodeled dynamics renders the motion infeasible on the real system. Model errors can be a result of model simplifications, but also naturally arise when deploying the robot in unstructured and nondeterministic environments. Predominantly, compliant contacts and actuator dynamics lead to bandwidth limitations. While classical control methods provide tools to synthesize controllers that are robust to a class of model errors, such a notion is missing in modern trajectory optimization, which is solved in the time domain. We propose frequency-shaped cost functions to achieve robust solutions in the context of optimal control for legged robots. Through simulation and hardware experiments we show that motion plans can be made compatible with bandwidth limits set by actuators and contact dynamics. The smoothness of the model predictive solutions can be continuously tuned without compromising the feasibility of the problem. Experiments with the quadrupedal robot ANYmal, which is driven by highly-compliant series elastic actuators, showed significantly improved tracking performance of the planned motion, torque, and force trajectories and enabled the machine to walk robustly on terrain with unmodeled compliance

    Predictive Whole-Body Control of Humanoid Robot Locomotion

    Get PDF
    Humanoid robots are machines built with an anthropomorphic shape. Despite decades of research into the subject, it is still challenging to tackle the robot locomotion problem from an algorithmic point of view. For example, these machines cannot achieve a constant forward body movement without exploiting contacts with the environment. The reactive forces resulting from the contacts are subject to strong limitations, complicating the design of control laws. As a consequence, the generation of humanoid motions requires to exploit fully the mathematical model of the robot in contact with the environment or to resort to approximations of it. This thesis investigates predictive and optimal control techniques for tackling humanoid robot motion tasks. They generate control input values from the system model and objectives, often transposed as cost function to minimize. In particular, this thesis tackles several aspects of the humanoid robot locomotion problem in a crescendo of complexity. First, we consider the single step push recovery problem. Namely, we aim at maintaining the upright posture with a single step after a strong external disturbance. Second, we generate and stabilize walking motions. In addition, we adopt predictive techniques to perform more dynamic motions, like large step-ups. The above-mentioned applications make use of different simplifications or assumptions to facilitate the tractability of the corresponding motion tasks. Moreover, they consider first the foot placements and only afterward how to maintain balance. We attempt to remove all these simplifications. We model the robot in contact with the environment explicitly, comparing different methods. In addition, we are able to obtain whole-body walking trajectories automatically by only specifying the desired motion velocity and a moving reference on the ground. We exploit the contacts with the walking surface to achieve these objectives while maintaining the robot balanced. Experiments are performed on real and simulated humanoid robots, like the Atlas and the iCub humanoid robots

    Interactive simulation of stylized human locomotion

    Get PDF
    Animating natural human motion in dynamic environments is difficult because of complex geometric and physical interactions. Simulation provides an automatic solution to parts of this problem, but it needs control systems to produce lifelike motions. This paper describes the systematic computation of controllers that can reproduce a range of locomotion styles in interactive simulations. Given a reference motion that describes the desired style, a derived control system can reproduce that style in simulation and in new environments. Because it produces high-quality motions that are both geometrically and physically consistent with simulated surroundings, interactive animation systems could begin to use this approach along with more established kinematic methods.Singapore-MIT GAMBIT Game LabNational Science Foundation (U.S.) (Fellowship 2007043041)Pixar (Firm

    Motion Planning and Feedback Control of Simulated Robots in Multi-Contact Scenarios

    Get PDF
    Diese Dissertation präsentiert eine optimale steuerungsbasierte Architektur für die Bewegungsplanung und Rückkopplungssteuerung simulierter Roboter in Multikontaktszenarien. Bewegungsplanung und -steuerung sind grundlegende Bausteine für die Erstellung wirklich autonomer Roboter. Während in diesen Bereichen enorme Fortschritte für Manipulatoren mit festem Sockel und Radrobotern in den letzten Jahren erzielt wurden, besteht das Problem der Bewegungsplanung und -steuerung für Roboter mit Armen und Beinen immer noch ein ungelöstes Problem, das die Notwendigkeit effizienterer und robusterer Algorithmen belegt. In diesem Zusammenhang wird in dieser Dissertation eine Architektur vorgeschlagen, mit der zwei Hauptherausforderungen angegangen werden sollen, nämlich die effiziente Planung von Kontaktsequenzen und Ganzkörperbewegungen für Floating-Base-Roboter sowie deren erfolgreiche Ausführung mit Rückkopplungsregelungsstrategien, die Umgebungsunsicherheiten bewältigen könne

    Online receding horizon planning of multi-contact locomotion

    Get PDF
    Legged robots can traverse uneven terrain by using multiple contacts between their limbs and the environment. Nevertheless, to enable reliable operation in the real world, legged robots necessarily require the capability to online re-plan their motions in response to changing conditions, such as environment changes, or state deviations due to external force perturbations. To approach this goal, Receding Horizon Planning (RHP) can be a promising solution. RHP refers to the planning framework that can constantly update the motion plan for immediate execution. To achieve successful RHP, we typically need to consider an extended planning horizon, which consists of an execution horizon that plans the motion to be executed, and a prediction horizon that foresees the future. Although the prediction horizon is never executed, it is important to the success of RHP. This is because the prediction horizon serves as a value function approximation that evaluates the feasibility and the future effort required for accomplishing the given task starting from a chosen robot state. Having such value information can guide the execution horizon toward the states that are beneficial for the future. Nevertheless, computing such multi-contact motions for a legged robot to traverse uneven terrain can be time-consuming, especially when considering a long planning horizon. The computation complexity typically comes from the simultaneous resolution of the following two sub-problems: 1) selecting a gait pattern that specifies the sequence in which the limbs break and make contact with the environment; 2)synthesizing the contact and motion plan that determines the robot state trajectory along with the contact plan, i.e., contact locations and contact timings. The issue of gait pattern selection introduces combinatorial complexity into the planning problem,while the computation of the contact and motion plan brings high-dimensionality and non-convexity due to the consideration of complex non-linear dynamics constraints. To facilitate online RHP of multi-contact motions, in this thesis, we focus on exploring novel methods to address these two sub-problems efficiently. To give more detail, we firstly consider the problem of planning contact and motion plans in an online receding horizon fashion. In this case, we pre-specifying the gait pattern as a priori. Although this helps us to avoid the combinatorial complexity, the resulting planning problem is still high-dimensional and non-convex, which can hinder online computation. To improve the computation speed, we propose to simplify the modeling of the value function approximation that is required for guiding the RHP. This leads to 1) Receding Horizon Planning with Multiple Levels of Model Fidelity, where we compute the prediction horizon with a convex relaxed model; 2) Locally- Guided Receding Horizon Planning—where we propose to learn an oracle to predict local objectives (intermediate goals) for completing a given task, and then we use these local objectives to construct local value functions to guide a short-horizon RHP. We evaluate our methods for planning centroidal trajectories of a humanoid robot walking on moderate slopes as well as large slopes where static stability cannot be maintained.The result of multi-fidelity RHP demonstrates that we can accelerate the computation speed by relaxing the model accuracy in the prediction horizon. However, the relaxation cannot be arbitrary. Furthermore, owing to the shortened planning horizon, we find that locally-guided RHP demonstrates the best computation efficiency (95%-98.6%cycles converge online). This computation advantage enables us to demonstrate online RHP for our real-world humanoid robot Talos walking in dynamic environments that change on-the-fly. To handle the combinatorial complexity that arises from the gait pattern selection issue, we propose the idea of constructing a map from the task specifications to the gait pattern selections for a given environment model and performance objective(cost). We show that for a 2D half-cheetah model and a quadruped robot, a direct mapping between a given task and an optimal gait pattern can be established. We use supervised learning to capture the structure of this map in the form of gait regions.Furthermore, we also find that the trajectories in each gait region are qualitatively similar. We utilize this property to construct a warm-starting trajectory for each gait region, i.e., the mean of the trajectories discovered in each region. We empirically show that these warm-starting trajectories can improve the computation speed of our trajectory optimization problem up to 60 times when compared with random initial guesses. Moreover, we also conduct experimental trials on the ANYmal robot to validate our method

    Simulation And Control At the Boundaries Between Humans And Assistive Robots

    Get PDF
    Human-machine interaction has become an important area of research as progress is made in the fields of rehabilitation robotics, powered prostheses, and advanced exercise machines. Adding to the advances in this area, a novel controller for a powered transfemoral prosthesis is introduced that requires limited tuning and explicitly considers energy regeneration. Results from a trial conducted with an individual with an amputation show self-powering operation for the prosthesis while concurrently attaining basic gait fidelity across varied walking speeds. Experience in prosthesis development revealed that, though every effort is made to ensure the safety of the human subject, limited testing of such devices prior to human trials can be completed in the current research environment. Two complementary alternatives are developed to fill that gap. First, the feasibility of implementing impulse-momentum sliding mode control on a robot that can physically replace a human with a transfemoral amputation to emulate weight-bearing for initial prototype walking tests is established. Second, a more general human simulation approach is proposed that can be used in any of the aforementioned human-machine interaction fields. Seeking this general human simulation method, a unique pair of solutions for simulating a Hill muscle-actuated linkage system is formulated. These include using the Lyapunov-based backstepping control method to generate a closed-loop tracking simulation and, motivated by limitations observed in backstepping, an optimal control solver based on differential flatness and sum of squares polynomials in support of receding horizon controlled (e.g. model predictive control) or open-loop simulations. v The backstepping framework provides insight into muscle redundancy resolution. The optimal control framework uses this insight to produce a computationally efficient approach to musculoskeletal system modeling. A simulation of a human arm is evaluated in both structures. Strong tracking performance is achieved in the backstepping case. An exercise optimization application using the optimal control solver showcases the computational benefits of the solver and reveals the feasibility of finding trajectories for human-exercise machine interaction that can isolate a muscle of interest for strengthening
    corecore