2,692 research outputs found

    Analyzing Android Browser Apps for file:// Vulnerabilities

    Full text link
    Securing browsers in mobile devices is very challenging, because these browser apps usually provide browsing services to other apps in the same device. A malicious app installed in a device can potentially obtain sensitive information through a browser app. In this paper, we identify four types of attacks in Android, collectively known as FileCross, that exploits the vulnerable file:// to obtain users' private files, such as cookies, bookmarks, and browsing histories. We design an automated system to dynamically test 115 browser apps collected from Google Play and find that 64 of them are vulnerable to the attacks. Among them are the popular Firefox, Baidu and Maxthon browsers, and the more application-specific ones, including UC Browser HD for tablet users, Wikipedia Browser, and Kids Safe Browser. A detailed analysis of these browsers further shows that 26 browsers (23%) expose their browsing interfaces unintentionally. In response to our reports, the developers concerned promptly patched their browsers by forbidding file:// access to private file zones, disabling JavaScript execution in file:// URLs, or even blocking external file:// URLs. We employ the same system to validate the ten patches received from the developers and find one still failing to block the vulnerability.Comment: The paper has been accepted by ISC'14 as a regular paper (see https://daoyuan14.github.io/). This is a Technical Report version for referenc

    STATIC AND DYNAMIC ANALYSES FOR PROTECTING THE JAVA SOFTWARE EXECUTION ENVIRONMENT

    Get PDF
    In my thesis, I present three projects on which I have worked during my Ph.D. studies. All of them focus on software protection in the Java environment with static and dynamic techniques for control-flow and data-dependency analysis. More specifically, the first two works are dedicated to the problem of deserialization of untrusted data in Java. In the first, I present a defense system that was designed for protecting the Java Virtual Machine, along with the results that were obtained. In the second, I present a recent research project that aims at automatic generation of deserialization attacks, to help identifying them and increasing protection. The last discussed work concerns another branch of software protection: the authentication on short-distance channels (or the lack thereof) in Android APKs. In said work, I present a tool that was built for automatically identifying the presence of high-level authentication in Android apps. I thoroughly discuss experiments, limitations and future work for all three projects, concluding with general principles that bring these works together, and can be applied when facing related security issues in high-level software protection

    Deep Reinforcement Learning Driven Applications Testing

    Get PDF
    Applications have become indispensable in our lives, and ensuring their correctness is now a critical issue. Automatic system test case generation can significantly improve the testing process for these applications, which has recently motivated researchers to work on this problem, defining various approaches. However, most state-of-the-art approaches automatically generate test cases leveraging symbolic execution or random exploration techniques. This led to techniques that lose efficiency when dealing with an increasing number of program constraints and become inapplicable when conditions are too challenging to solve or even to formulate. This Ph.D. thesis proposes addressing current techniques' limitations by exploiting Deep Reinforcement Learning. Deep Reinforcement Learning (Deep RL) is a machine learning technique that does not require a labeled training set as input since the learning process is guided by the positive or negative reward experienced during the tentative execution of a task. Hence, it can be used to dynamically learn how to build a test suite based on the feedback obtained during past successful or unsuccessful attempts. This dissertation presents three novel techniques that exploit this intuition: ARES, RONIN, and IFRIT. Since functional testing and security testing are complementary, this Ph.D. thesis explores both testing techniques using the same approach for test cases generation. ARES is a Deep RL approach for functional testing of Android apps. RONIN addresses the issue of generating exploits for a subset of Android ICC vulnerabilities. Subsequently, to better expose the bugs discovered by previous techniques, this thesis presents IFRIT, a focused testing approach capable of increasing the number of test cases that can reach a specific target (i.e., a precise section or statement of an application) and their diversity. IFRIT has the ultimate goal of exposing faults affecting the given program point

    Policy Enforcement with Proactive Libraries

    Full text link
    Software libraries implement APIs that deliver reusable functionalities. To correctly use these functionalities, software applications must satisfy certain correctness policies, for instance policies about the order some API methods can be invoked and about the values that can be used for the parameters. If these policies are violated, applications may produce misbehaviors and failures at runtime. Although this problem is general, applications that incorrectly use API methods are more frequent in certain contexts. For instance, Android provides a rich and rapidly evolving set of APIs that might be used incorrectly by app developers who often implement and publish faulty apps in the marketplaces. To mitigate this problem, we introduce the novel notion of proactive library, which augments classic libraries with the capability of proactively detecting and healing misuses at run- time. Proactive libraries blend libraries with multiple proactive modules that collect data, check the correctness policies of the libraries, and heal executions as soon as the violation of a correctness policy is detected. The proactive modules can be activated or deactivated at runtime by the users and can be implemented without requiring any change to the original library and any knowledge about the applications that may use the library. We evaluated proactive libraries in the context of the Android ecosystem. Results show that proactive libraries can automati- cally overcome several problems related to bad resource usage at the cost of a small overhead.Comment: O. Riganelli, D. Micucci and L. Mariani, "Policy Enforcement with Proactive Libraries" 2017 IEEE/ACM 12th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS), Buenos Aires, Argentina, 2017, pp. 182-19
    corecore