1,210 research outputs found

    Toolflows for Mapping Convolutional Neural Networks on FPGAs: A Survey and Future Directions

    Get PDF
    In the past decade, Convolutional Neural Networks (CNNs) have demonstrated state-of-the-art performance in various Artificial Intelligence tasks. To accelerate the experimentation and development of CNNs, several software frameworks have been released, primarily targeting power-hungry CPUs and GPUs. In this context, reconfigurable hardware in the form of FPGAs constitutes a potential alternative platform that can be integrated in the existing deep learning ecosystem to provide a tunable balance between performance, power consumption and programmability. In this paper, a survey of the existing CNN-to-FPGA toolflows is presented, comprising a comparative study of their key characteristics which include the supported applications, architectural choices, design space exploration methods and achieved performance. Moreover, major challenges and objectives introduced by the latest trends in CNN algorithmic research are identified and presented. Finally, a uniform evaluation methodology is proposed, aiming at the comprehensive, complete and in-depth evaluation of CNN-to-FPGA toolflows.Comment: Accepted for publication at the ACM Computing Surveys (CSUR) journal, 201

    Multi-Purpose Systems: A Novel Dataflow-Based Generation and Mapping Strategy

    Get PDF
    International audienceThe Dataflow Process Networks (DPN) Model of Computation (MoC) has been used in di ferent ways to improve time-to-market for complex multi-purpose systems. The development of such systems presents mainly two problems: (1) the manual creation of the multi-purpose specialized hardware infrastructures is quite error-prone and may take a lot of time for debugging; (2) the more hardware are the details to be handled the greater the eff ort required to define an optimized components library. This paper tackles both problems, leveraging on the combination of the DPN MoC with a coarse-grained recon gurable approach to hardware design and on the exploitation of the DPN MoC for the synthesis of target-independent hardware codes. Combining two state of the art tools, namely the Multi-Dataflow Composer tool and the Open RVC-CAL Compiler, we propose a novel dataflow-based design ow that provide a considerable on-chip area saving targeting both FPGAs and ASICs

    Dataflow Computing with Polymorphic Registers

    Get PDF
    Heterogeneous systems are becoming increasingly popular for data processing. They improve performance of simple kernels applied to large amounts of data. However, sequential data loads may have negative impact. Data parallel solutions such as Polymorphic Register Files (PRFs) can potentially accelerate applications by facilitating high speed, parallel access to performance-critical data. Furthermore, by PRF customization, specific data path features are exposed to the programmer in a very convenient way. PRFs allow additional control over the registers dimensions, and the number of elements which can be simultaneously accessed by computational units. This paper shows how PRFs can be integrated in dataflow computational platforms. In particular, starting from an annotated source code, we present a compiler-based methodology that automatically generates the customized PRFs and the enhanced computational kernels that efficiently exploit them
    • …
    corecore