16,319 research outputs found

    Analysis of Edge Detection Technique for Hardware Realization

    Get PDF
    Edge detection plays an important role in image processing and computer vision applications. Different edge detection technique with distinct criteria have been proposed in various literatures. Thus an evaluation of different edge detection techniques is essential to measure their effectiveness over a wide range of natural images with varying applications. Several performance indices for quantitative evaluation of edge detectors may be found in the literature among which Edge Mis-Match error (EMM), F-Measure (FM), Figure of Merit (FOM) and Precision and Recall (PR) curve are most effective. Several experiments on different database containing a wide range of natural and synthetic images illustrate the effectiveness of Canny edge detector over other detectors for varying conditions. Moreover, due to the ever increasing demand for high speed and time critical tasks in many image processing application, we have implemented an efficient hardware architecture for Canny edge detector in VHDL. The studied implementation technique adopts parallel architecture of Field Programmable Gate Array (FPGA) to accelerate the process of edge detection via. Canny’s algorithm. In this dissertation, we have simulated the considered architecture in Modelsim 10.4a student edition to demonstrate the potential of parallel processing for edge detection. This analysis and implementation may encourage and serve as a basis building block for several complex computer vision applications. With the advent of Field Programmable Gate Arrays (FPGA), massively parallel architectures can be developed to accelerate the execution speed of several image processing algorithms. In this work, such a parallel architecture is proposed to accelerate the Canny edge detection algorithm. The architecture is simulated in Modelsim 10.4a student edition platform

    Joint Video and Text Parsing for Understanding Events and Answering Queries

    Full text link
    We propose a framework for parsing video and text jointly for understanding events and answering user queries. Our framework produces a parse graph that represents the compositional structures of spatial information (objects and scenes), temporal information (actions and events) and causal information (causalities between events and fluents) in the video and text. The knowledge representation of our framework is based on a spatial-temporal-causal And-Or graph (S/T/C-AOG), which jointly models possible hierarchical compositions of objects, scenes and events as well as their interactions and mutual contexts, and specifies the prior probabilistic distribution of the parse graphs. We present a probabilistic generative model for joint parsing that captures the relations between the input video/text, their corresponding parse graphs and the joint parse graph. Based on the probabilistic model, we propose a joint parsing system consisting of three modules: video parsing, text parsing and joint inference. Video parsing and text parsing produce two parse graphs from the input video and text respectively. The joint inference module produces a joint parse graph by performing matching, deduction and revision on the video and text parse graphs. The proposed framework has the following objectives: Firstly, we aim at deep semantic parsing of video and text that goes beyond the traditional bag-of-words approaches; Secondly, we perform parsing and reasoning across the spatial, temporal and causal dimensions based on the joint S/T/C-AOG representation; Thirdly, we show that deep joint parsing facilitates subsequent applications such as generating narrative text descriptions and answering queries in the forms of who, what, when, where and why. We empirically evaluated our system based on comparison against ground-truth as well as accuracy of query answering and obtained satisfactory results

    Unsupervised edge map scoring: a statistical complexity approach

    Full text link
    We propose a new Statistical Complexity Measure (SCM) to qualify edge maps without Ground Truth (GT) knowledge. The measure is the product of two indices, an \emph{Equilibrium} index E\mathcal{E} obtained by projecting the edge map into a family of edge patterns, and an \emph{Entropy} index H\mathcal{H}, defined as a function of the Kolmogorov Smirnov (KS) statistic. This new measure can be used for performance characterization which includes: (i)~the specific evaluation of an algorithm (intra-technique process) in order to identify its best parameters, and (ii)~the comparison of different algorithms (inter-technique process) in order to classify them according to their quality. Results made over images of the South Florida and Berkeley databases show that our approach significantly improves over Pratt's Figure of Merit (PFoM) which is the objective reference-based edge map evaluation standard, as it takes into account more features in its evaluation

    Ultrasound IMT measurement on a multi-ethnic and multi-institutional database: Our review and experience using four fully automated and one semi-automated methods

    Get PDF
    Automated and high performance carotid intima-media thickness (IMT) measurement is gaining increasing importance in clinical practice to assess the cardiovascular risk of patients. In this paper, we compare four fully automated IMT measurement techniques (CALEX, CAMES, CARES and CAUDLES) and one semi-automated technique (FOAM). We present our experience using these algorithms, whose lumen-intima and media-adventitia border estimation use different methods that can be: (a) edge-based; (b) training-based; (c) feature-based; or (d) directional Edge-Flow based. Our database (DB) consisted of 665 images that represented a multi-ethnic group and was acquired using four OEM scanners. The performance evaluation protocol adopted error measures, reproducibility measures, and Figure of Merit (FoM). FOAM showed the best performance, with an IMT bias equal to 0.025 ± 0.225 mm, and a FoM equal to 96.6%. Among the four automated methods, CARES showed the best results with a bias of 0.032 ± 0.279 mm, and a FoM to 95.6%, which was statistically comparable to that of FOAM performance in terms of accuracy and reproducibility. This is the first time that completely automated and user-driven techniques have been compared on a multi-ethnic dataset, acquired using multiple original equipment manufacturer (OEM) machines with different gain settings, representing normal and pathologic case

    Self-Calibration Methods for Uncontrolled Environments in Sensor Networks: A Reference Survey

    Get PDF
    Growing progress in sensor technology has constantly expanded the number and range of low-cost, small, and portable sensors on the market, increasing the number and type of physical phenomena that can be measured with wirelessly connected sensors. Large-scale deployments of wireless sensor networks (WSN) involving hundreds or thousands of devices and limited budgets often constrain the choice of sensing hardware, which generally has reduced accuracy, precision, and reliability. Therefore, it is challenging to achieve good data quality and maintain error-free measurements during the whole system lifetime. Self-calibration or recalibration in ad hoc sensor networks to preserve data quality is essential, yet challenging, for several reasons, such as the existence of random noise and the absence of suitable general models. Calibration performed in the field, without accurate and controlled instrumentation, is said to be in an uncontrolled environment. This paper provides current and fundamental self-calibration approaches and models for wireless sensor networks in uncontrolled environments
    corecore