11,308 research outputs found

    A Survey on Software Testing Techniques using Genetic Algorithm

    Full text link
    The overall aim of the software industry is to ensure delivery of high quality software to the end user. To ensure high quality software, it is required to test software. Testing ensures that software meets user specifications and requirements. However, the field of software testing has a number of underlying issues like effective generation of test cases, prioritisation of test cases etc which need to be tackled. These issues demand on effort, time and cost of the testing. Different techniques and methodologies have been proposed for taking care of these issues. Use of evolutionary algorithms for automatic test generation has been an area of interest for many researchers. Genetic Algorithm (GA) is one such form of evolutionary algorithms. In this research paper, we present a survey of GA approach for addressing the various issues encountered during software testing.Comment: 13 Page

    An empirical investigation into branch coverage for C programs using CUTE and AUSTIN

    Get PDF
    Automated test data generation has remained a topic of considerable interest for several decades because it lies at the heart of attempts to automate the process of Software Testing. This paper reports the results of an empirical study using the dynamic symbolic-execution tool. CUTE, and a search based tool, AUSTIN on five non-trivial open source applications. The aim is to provide practitioners with an assessment of what can be achieved by existing techniques with little or no specialist knowledge and to provide researchers with baseline data against which to measure subsequent work. To achieve this, each tool is applied 'as is', with neither additional tuning nor supporting harnesses and with no adjustments applied to the subject programs under test. The mere fact that these tools can be applied 'out of the box' in this manner reflects the growing maturity of Automated test data generation. However, as might be expected, the study reveals opportunities for improvement and suggests ways to hybridize these two approaches that have hitherto been developed entirely independently. (C) 2010 Elsevier Inc. All rights reserved

    Postgraduate Conference 2014: Technical report 1-14

    Get PDF

    Determining Basis Test Paths Using Genetic Algorithm and J4

    Get PDF
    Basis test paths is a method that uses a graph contains nodes as a representation of codes and the lines as a sequence of code execution steps. Determination of basis test paths can be generated using a Genetic Algorithm, but the drawback was the number of iterations affect the possibility of visibility of the appropriate basis path. When the iteration is less, there is a possibility the paths do not appear all. Conversely, if the iteration is too much, all the paths have appeared in the middle of iteration. This research aims to optimize the performance of Genetic Algorithms for the generation of Basis Test Paths by determining how many iterations level corresponding to the characteristics of the code. Code metrics Node, Edge, VG, NBD, LOC were used as features to determine the number of iterations. J48 classifier was employed as a method to predict the number of iterations. There were 17 methods have selected as a data training, and 16 methods as a data test. The system was able to predict 84.5% of 58 basis paths. Efficiency test results also show that our system was able to seek Basis Paths 35% faster than the old system

    Using genetic algorithms to generate test sequences for complex timed systems

    Get PDF
    The generation of test data for state based specifications is a computationally expensive process. This problem is magnified if we consider that time con- straints have to be taken into account to govern the transitions of the studied system. The main goal of this paper is to introduce a complete methodology, sup- ported by tools, that addresses this issue by represent- ing the test data generation problem as an optimisa- tion problem. We use heuristics to generate test cases. In order to assess the suitability of our approach we consider two different case studies: a communication protocol and the scientific application BIPS3D. We give details concerning how the test case generation problem can be presented as a search problem and automated. Genetic algorithms (GAs) and random search are used to generate test data and evaluate the approach. GAs outperform random search and seem to scale well as the problem size increases. It is worth to mention that we use a very simple fitness function that can be eas- ily adapted to be used with other evolutionary search techniques
    • 

    corecore