1,217 research outputs found

    Visualizations for an Explainable Planning Agent

    Full text link
    In this paper, we report on the visualization capabilities of an Explainable AI Planning (XAIP) agent that can support human in the loop decision making. Imposing transparency and explainability requirements on such agents is especially important in order to establish trust and common ground with the end-to-end automated planning system. Visualizing the agent's internal decision-making processes is a crucial step towards achieving this. This may include externalizing the "brain" of the agent -- starting from its sensory inputs, to progressively higher order decisions made by it in order to drive its planning components. We also show how the planner can bootstrap on the latest techniques in explainable planning to cast plan visualization as a plan explanation problem, and thus provide concise model-based visualization of its plans. We demonstrate these functionalities in the context of the automated planning components of a smart assistant in an instrumented meeting space.Comment: PREVIOUSLY Mr. Jones -- Towards a Proactive Smart Room Orchestrator (appeared in AAAI 2017 Fall Symposium on Human-Agent Groups

    General-purpose autonomic computing

    Get PDF
    The success of mainstream computing is largely due to the widespread availability of general-purpose architectures and of generic approaches that can be used to solve real-world problems cost-effectively and across a broad range of application domains. In this chapter, we propose that a similar generic framework is used to make the development of autonomic solutions cost effective, and to establish autonomic computing as a major approach to managing the complexity of today’s large-scale systems and systems of systems. To demonstrate the feasibility of general-purpose autonomic computing, we introduce a generic autonomic computing framework comprising a policy-based autonomic architecture and a novel four-step method for the effective development of self-managing systems. A prototype implementation of the reconfigurable policy engine at the core of our architecture is then used to develop autonomic solutions for case studies from several application domains. Looking into the future, we describe a methodology for the engineering of self-managing systems that extends and generalises our autonomic computing framework further

    Autonomic Management Policy SpeciïŹcation: from UML to DSML

    Get PDF
    International audienceAutonomic computing is recognized as one of the most promizing solutions to address the increasingly complex task of distributed environments' administration. In this context, many projects relied on software components and architectures to provide autonomic management frameworks. We designed such a component-based autonomic management framework, but observed that the interfaces of a component model are too low-level and difficult to use. Therefore, we introduced UML diagrams for the modeling of deployment and management policies. However, we had to adapt/twist the UML semantics in order to meet our requirements, which led us to define DSMLs. In this paper, we present our experience in designing the Tune system and its support for management policy specification, relying on UML diagrams and on DSMLs. We analyse these two approaches, pinpointing the benefits of DSMLs over UML

    Using quantitative analysis to implement autonomic IT systems

    Get PDF
    The software underpinning today’s IT systems needs to adapt dynamically and predictably to rapid changes in system workload, environment and objectives. We describe a software framework that achieves such adaptiveness for IT systems whose components can be modelled as Markov chains. The framework comprises (i) an autonomic architecture that uses Markov-chain quantitative analysis to dynamically adjust the parameters of an IT system in line with its state, environment and objectives; and (ii) a method for developing instances of this architecture for real-world systems. Two case studies are presented that use the framework successfully for the dynamic power management of disk drives, and for the adaptive management of cluster availability within data centres, respectively

    Software engineering techniques for the development of systems of systems

    Get PDF
    This paper investigates how existing software engineering techniques can be employed, adapted and integrated for the development of systems of systems. Starting from existing system-of-systems (SoS) studies, we identify computing paradigms and techniques that have the potential to help address the challenges associated with SoS development, and propose an SoS development framework that combines these techniques in a novel way. This framework addresses the development of a class of IT systems of systems characterised by high variability in the types of interactions between their component systems, and by relatively small numbers of such interactions. We describe how the framework supports the dynamic, automated generation of the system interfaces required to achieve these interactions, and present a case study illustrating the development of a data-centre SoS using the new framework

    Self-Adaptive Communication for Collaborative Mobile Entities in ERCMS

    Get PDF
    International audienceAdaptation of communication is required for maintaining the connectivity and the quality of communication in group-wide collaborative activities. This becomes challenging to handle when considering mobile entities in a wireless environment, requiring responsiveness and availability of the communication system. We address these challenges in the context of the ROSACE project where mobile ground and flying robots have to collaborate with each other and with remote human and artificial actors to save and rescue in case of disasters such as forest fires. This paper aims to expose a communication component architecture allowing to manage a cooperative adaptation which is aware of the activity and resource context into pervasive environment. This allows to provide the appropriate adaptation of the activity in response to evolutions of the activity requirements and the changes in relation with the communication resource constraints. In this paper, we present a simulation of a ROSACE use case. The results show how ROSACE entities collaborate to maintain the connectivity and to enhance the quality of communications
    • 

    corecore