5,609 research outputs found

    A clever elimination strategy for efficient minimal solvers

    Full text link
    We present a new insight into the systematic generation of minimal solvers in computer vision, which leads to smaller and faster solvers. Many minimal problem formulations are coupled sets of linear and polynomial equations where image measurements enter the linear equations only. We show that it is useful to solve such systems by first eliminating all the unknowns that do not appear in the linear equations and then extending solutions to the rest of unknowns. This can be generalized to fully non-linear systems by linearization via lifting. We demonstrate that this approach leads to more efficient solvers in three problems of partially calibrated relative camera pose computation with unknown focal length and/or radial distortion. Our approach also generates new interesting constraints on the fundamental matrices of partially calibrated cameras, which were not known before.Comment: 13 pages, 7 figure

    Beyond Gr\"obner Bases: Basis Selection for Minimal Solvers

    Full text link
    Many computer vision applications require robust estimation of the underlying geometry, in terms of camera motion and 3D structure of the scene. These robust methods often rely on running minimal solvers in a RANSAC framework. In this paper we show how we can make polynomial solvers based on the action matrix method faster, by careful selection of the monomial bases. These monomial bases have traditionally been based on a Gr\"obner basis for the polynomial ideal. Here we describe how we can enumerate all such bases in an efficient way. We also show that going beyond Gr\"obner bases leads to more efficient solvers in many cases. We present a novel basis sampling scheme that we evaluate on a number of problems

    Calibration Wizard: A Guidance System for Camera Calibration Based on Modelling Geometric and Corner Uncertainty

    Get PDF
    It is well known that the accuracy of a calibration depends strongly on the choice of camera poses from which images of a calibration object are acquired. We present a system -- Calibration Wizard -- that interactively guides a user towards taking optimal calibration images. For each new image to be taken, the system computes, from all previously acquired images, the pose that leads to the globally maximum reduction of expected uncertainty on intrinsic parameters and then guides the user towards that pose. We also show how to incorporate uncertainty in corner point position in a novel principled manner, for both, calibration and computation of the next best pose. Synthetic and real-world experiments are performed to demonstrate the effectiveness of Calibration Wizard.Comment: Oral presentation at ICCV 201

    MLPnP - A Real-Time Maximum Likelihood Solution to the Perspective-n-Point Problem

    Get PDF
    In this paper, a statistically optimal solution to the Perspective-n-Point (PnP) problem is presented. Many solutions to the PnP problem are geometrically optimal, but do not consider the uncertainties of the observations. In addition, it would be desirable to have an internal estimation of the accuracy of the estimated rotation and translation parameters of the camera pose. Thus, we propose a novel maximum likelihood solution to the PnP problem, that incorporates image observation uncertainties and remains real-time capable at the same time. Further, the presented method is general, as is works with 3D direction vectors instead of 2D image points and is thus able to cope with arbitrary central camera models. This is achieved by projecting (and thus reducing) the covariance matrices of the observations to the corresponding vector tangent space.Comment: Submitted to the ISPRS congress (2016) in Prague. Oral Presentation. Published in ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., III-3, 131-13

    A sparse resultant based method for efficient minimal solvers

    Full text link
    Many computer vision applications require robust and efficient estimation of camera geometry. The robust estimation is usually based on solving camera geometry problems from a minimal number of input data measurements, i.e. solving minimal problems in a RANSAC framework. Minimal problems often result in complex systems of polynomial equations. Many state-of-the-art efficient polynomial solvers to these problems are based on Gr\"obner bases and the action-matrix method that has been automatized and highly optimized in recent years. In this paper we study an alternative algebraic method for solving systems of polynomial equations, i.e., the sparse resultant-based method and propose a novel approach to convert the resultant constraint to an eigenvalue problem. This technique can significantly improve the efficiency and stability of existing resultant-based solvers. We applied our new resultant-based method to a large variety of computer vision problems and show that for most of the considered problems, the new method leads to solvers that are the same size as the the best available Gr\"obner basis solvers and of similar accuracy. For some problems the new sparse-resultant based method leads to even smaller and more stable solvers than the state-of-the-art Gr\"obner basis solvers. Our new method can be fully automatized and incorporated into existing tools for automatic generation of efficient polynomial solvers and as such it represents a competitive alternative to popular Gr\"obner basis methods for minimal problems in computer vision

    Computational Methods for Computer Vision : Minimal Solvers and Convex Relaxations

    Get PDF
    Robust fitting of geometric models is a core problem in computer vision. The most common approach is to use a hypothesize-and-test framework, such as RANSAC. In these frameworks the model is estimated from as few measurements as possible, which minimizes the risk of selecting corrupted measurements. These estimation problems are called minimal problems, and they can often be formulated as systems of polynomial equations. In this thesis we present new methods for building so-called minimal solvers or polynomial solvers, which are specialized code for solving such systems. On several minimal problems we improve on the state-of-the-art both with respect to numerical stability and execution time.In many computer vision problems low rank matrices naturally occur. The rank can serve as a measure of model complexity and typically a low rank is desired. Optimization problems containing rank penalties or constraints are in general difficult. Recently convex relaxations, such as the nuclear norm, have been used to make these problems tractable. In this thesis we present new convex relaxations for rank-based optimization which avoid drawbacks of previous approaches and provide tighter relaxations. We evaluate our methods on a number of real and synthetic datasets and show state-of-the-art results

    Sparse resultant based minimal solvers in computer vision and their connection with the action matrix

    Full text link
    Many computer vision applications require robust and efficient estimation of camera geometry from a minimal number of input data measurements, i.e., solving minimal problems in a RANSAC framework. Minimal problems are usually formulated as complex systems of sparse polynomials. The systems usually are overdetermined and consist of polynomials with algebraically constrained coefficients. Most state-of-the-art efficient polynomial solvers are based on the action matrix method that has been automated and highly optimized in recent years. On the other hand, the alternative theory of sparse resultants and Newton polytopes has been less successful for generating efficient solvers, primarily because the polytopes do not respect the constraints on the coefficients. Therefore, in this paper, we propose a simple iterative scheme to test various subsets of the Newton polytopes and search for the most efficient solver. Moreover, we propose to use an extra polynomial with a special form to further improve the solver efficiency via a Schur complement computation. We show that for some camera geometry problems our extra polynomial-based method leads to smaller and more stable solvers than the state-of-the-art Grobner basis-based solvers. The proposed method can be fully automated and incorporated into existing tools for automatic generation of efficient polynomial solvers. It provides a competitive alternative to popular Grobner basis-based methods for minimal problems in computer vision. We also study the conditions under which the minimal solvers generated by the state-of-the-art action matrix-based methods and the proposed extra polynomial resultant-based method, are equivalent. Specifically we consider a step-by-step comparison between the approaches based on the action matrix and the sparse resultant, followed by a set of substitutions, which would lead to equivalent minimal solvers.Comment: arXiv admin note: text overlap with arXiv:1912.1026
    corecore