3,219 research outputs found

    Automatic floating-point to fixed-point conversion for DSP code generation

    Get PDF

    FPGA Implementation of an Adaptive Noise Canceller for Robust Speech Enhancement Interfaces

    Get PDF
    This paper describes the design and implementation results of an adaptive Noise Canceller useful for the construction of Robust Speech Enhancement Interfaces. The algorithm being used has very good performance for real time applications. Its main disadvantage is the requirement of calculating several operations of division, having a high computational cost. Besides that, the accuracy of the algorithm is critical in fixed-point representation due to the wide range of the upper and lower bounds of the variables implied in the algorithm. To solve this problem, the accuracy is studied and according to the results obtained a specific word-length has been adopted for each variable. The algorithm has been implemented for Altera and Xilinx FPGAs using high level synthesis tools. The results for a fixed format of 40 bits for all the variables and for a specific word-length for each variable are analyzed and discussed

    EyeRIS User's Manual

    Full text link

    Design and testing methodologies for signal processing systems using DICE

    Get PDF
    The design and integration of embedded systems in heterogeneous programming environments is still largely done in an ad hoc fashion making the overall development process more complicated, tedious and error-prone. In this work, we propose enhancements to existing design flows that utilize model-based design to verify cross-platform correctness of individual actors. The DSPCAD Integrative Command Line Environment (DICE) is a realization of managing these enhancements. We demonstrate this design flow with two case studies. By using DICE's novel test framework on modules of a triggering system in the Large Hadron Collider, we demonstrate how the cross-platform model-based approach, automatic testbench creation and integration of testing in the design process alleviate the rigors of developing such a complex digital system. The second case study is an exploration study into the required precision for eigenvalue decomposition using the Jacobi algorithm. This case study is a demonstration of the use of dataflow modeling in early stage application exploration and the use of DICE in the overall design flow

    Automatic Creation of High-Bandwidth Memory Architectures from Domain-Specific Languages: The Case of Computational Fluid Dynamics

    Get PDF
    Numerical simulations can help solve complex problems. Most of these algorithms are massively parallel and thus good candidates for FPGA acceleration thanks to spatial parallelism. Modern FPGA devices can leverage high-bandwidth memory technologies, but when applications are memory-bound designers must craft advanced communication and memory architectures for efficient data movement and on-chip storage. This development process requires hardware design skills that are uncommon in domain-specific experts. In this paper, we propose an automated tool flow from a domain-specific language (DSL) for tensor expressions to generate massively-parallel accelerators on HBM-equipped FPGAs. Designers can use this flow to integrate and evaluate various compiler or hardware optimizations. We use computational fluid dynamics (CFD) as a paradigmatic example. Our flow starts from the high-level specification of tensor operations and combines an MLIR-based compiler with an in-house hardware generation flow to generate systems with parallel accelerators and a specialized memory architecture that moves data efficiently, aiming at fully exploiting the available CPU-FPGA bandwidth. We simulated applications with millions of elements, achieving up to 103 GFLOPS with one compute unit and custom precision when targeting a Xilinx Alveo U280. Our FPGA implementation is up to 25x more energy efficient than expert-crafted Intel CPU implementations

    Design of a smartphone with a Digital Signal Processor

    Get PDF
    corecore