10 research outputs found

    Connected Attribute Filtering Based on Contour Smoothness

    Get PDF

    Bayesian methods for non-gaussian data modeling and applications

    Get PDF
    Finite mixture models are among the most useful machine learning techniques and are receiving considerable attention in various applications. The use of finite mixture models in image and signal processing has proved to be of considerable interest in terms of both theoretical development and in their usefulness in several applications. In most of the applications, the Gaussian density is used in the mixture modeling of data. Although a Gaussian mixture may provide a reasonable approximation to many real-world distributions, it is certainly not always the best approximation especially in image and signal processing applications where we often deal with non-Gaussian data. In this thesis, we propose two novel approaches that may be used in modeling non-Gaussian data. These approaches use two highly flexible distributions, the generalized Gaussian distribution (GGD) and the general Beta distribution, in order to model the data. We are motivated by the fact that these distributions are able to fit many distributional shapes and then can be considered as a useful class of flexible models to address several problems and applications involving measurements and features having well-known marked deviation from the Gaussian shape. For the mixture estimation and selection problem, researchers have demonstrated that Bayesian approaches are fully optimal. The Bayesian learning allows the incorporation of prior knowledge in a formal coherent way that avoids overfitting problems. For this reason, we adopt different Bayesian approaches in order to learn our models parameters. First, we present a fully Bayesian approach to analyze finite generalized Gaussian mixture models which incorporate several standard mixtures, such as Laplace and Gaussian. This approach evaluates the posterior distribution and Bayes estimators using a Gibbs sampling algorithm, and selects the number of components in the mixture using the integrated likelihood. We also propose a fully Bayesian approach for finite Beta mixtures learning using a Reversible Jump Markov Chain Monte Carlo (RJMCMC) technique which simultaneously allows cluster assignments, parameters estimation, and the selection of the optimal number of clusters. We then validate the proposed methods by applying them to different image processing applications

    Mobile Robots Navigation

    Get PDF
    Mobile robots navigation includes different interrelated activities: (i) perception, as obtaining and interpreting sensory information; (ii) exploration, as the strategy that guides the robot to select the next direction to go; (iii) mapping, involving the construction of a spatial representation by using the sensory information perceived; (iv) localization, as the strategy to estimate the robot position within the spatial map; (v) path planning, as the strategy to find a path towards a goal location being optimal or not; and (vi) path execution, where motor actions are determined and adapted to environmental changes. The book addresses those activities by integrating results from the research work of several authors all over the world. Research cases are documented in 32 chapters organized within 7 categories next described

    Data Mining

    Get PDF
    The availability of big data due to computerization and automation has generated an urgent need for new techniques to analyze and convert big data into useful information and knowledge. Data mining is a promising and leading-edge technology for mining large volumes of data, looking for hidden information, and aiding knowledge discovery. It can be used for characterization, classification, discrimination, anomaly detection, association, clustering, trend or evolution prediction, and much more in fields such as science, medicine, economics, engineering, computers, and even business analytics. This book presents basic concepts, ideas, and research in data mining

    Advances in Reinforcement Learning

    Get PDF
    Reinforcement Learning (RL) is a very dynamic area in terms of theory and application. This book brings together many different aspects of the current research on several fields associated to RL which has been growing rapidly, producing a wide variety of learning algorithms for different applications. Based on 24 Chapters, it covers a very broad variety of topics in RL and their application in autonomous systems. A set of chapters in this book provide a general overview of RL while other chapters focus mostly on the applications of RL paradigms: Game Theory, Multi-Agent Theory, Robotic, Networking Technologies, Vehicular Navigation, Medicine and Industrial Logistic

    Automatic fault localization using the generalized Earth Mover's distance

    No full text
    Localizing fault lines and surfaces in seismic subsurface images is a daunting challenge. Existing state-of-the-art approaches usually involve visual interpretation by an expert, but this is time-consuming, expensive and error-prone. In this paper, we propose some initial steps towards a new algorithmic framework for automatic fault localization. The core of our approach is a deterministic model for 2D images that we call the Constrained Generalized Earth Mover's Distance (CGEMD) model. We propose an algorithm that returns the best approximation in the model for any given input 2D image X; the output of this algorithm is then post-processed to reveal the locations of the faults in the image. We demonstrate the validity of this approach on a number of synthetic and real-world examples

    XXI Workshop de Investigadores en Ciencias de la Computación - WICC 2019: libro de actas

    Get PDF
    Trabajos presentados en el XXI Workshop de Investigadores en Ciencias de la Computación (WICC), celebrado en la provincia de San Juan los días 25 y 26 de abril 2019, organizado por la Red de Universidades con Carreras en Informática (RedUNCI) y la Facultad de Ciencias Exactas, Físicas y Naturales de la Universidad Nacional de San Juan.Red de Universidades con Carreras en Informátic

    XXI Workshop de Investigadores en Ciencias de la Computación - WICC 2019: libro de actas

    Get PDF
    Trabajos presentados en el XXI Workshop de Investigadores en Ciencias de la Computación (WICC), celebrado en la provincia de San Juan los días 25 y 26 de abril 2019, organizado por la Red de Universidades con Carreras en Informática (RedUNCI) y la Facultad de Ciencias Exactas, Físicas y Naturales de la Universidad Nacional de San Juan.Red de Universidades con Carreras en Informátic
    corecore