4,708 research outputs found

    Terminology Extraction for and from Communications in Multi-disciplinary Domains

    Get PDF
    Terminology extraction generally refers to methods and systems for identifying term candidates in a uni-disciplinary and uni-lingual environment such as engineering, medical, physical and geological sciences, or administration, business and leisure. However, as human enterprises get more and more complex, it has become increasingly important for teams in one discipline to collaborate with others from not only a non-cognate discipline but also speaking a different language. Disaster mitigation and recovery, and conflict resolution are amongst the areas where there is a requirement to use standardised multilingual terminology for communication. This paper presents a feasibility study conducted to build terminology (and ontology) in the domain of disaster management and is part of the broader work conducted for the EU project Sland \ub4 ail (FP7 607691). We have evaluated CiCui (for Chinese name \ub4 \u8bcd\u8403, which translates to words gathered), a corpus-based text analytic system that combine frequency, collocation and linguistic analyses to extract candidates terminologies from corpora comprised of domain texts from diverse sources. CiCui was assessed against four terminology extraction systems and the initial results show that it has an above average precision in extracting terms

    Enhanced Integrated Scoring for Cleaning Dirty Texts

    Full text link
    An increasing number of approaches for ontology engineering from text are gearing towards the use of online sources such as company intranet and the World Wide Web. Despite such rise, not much work can be found in aspects of preprocessing and cleaning dirty texts from online sources. This paper presents an enhancement of an Integrated Scoring for Spelling error correction, Abbreviation expansion and Case restoration (ISSAC). ISSAC is implemented as part of a text preprocessing phase in an ontology engineering system. New evaluations performed on the enhanced ISSAC using 700 chat records reveal an improved accuracy of 98% as compared to 96.5% and 71% based on the use of only basic ISSAC and of Aspell, respectively.Comment: More information is available at http://explorer.csse.uwa.edu.au/reference

    The biomedical abbreviation recognition and resolution (BARR) track: Benchmarking, evaluation and importance of abbreviation recognition systems applied to Spanish biomedical abstracts

    Get PDF
    Healthcare professionals are generating a substantial volume of clinical data in narrative form. As healthcare providers are confronted with serious time constraints, they frequently use telegraphic phrases, domain-specific abbreviations and shorthand notes. Efficient clinical text processing tools need to cope with the recognition and resolution of abbreviations, a task that has been extensively studied for English documents. Despite the outstanding number of clinical documents written worldwide in Spanish, only a marginal amount of studies has been published on this subject. In clinical texts, as opposed to the medical literature, abbreviations are generally used without their definitions or expanded forms. The aim of the first Biomedical Abbreviation Recognition and Resolution (BARR) track, posed at the IberEval 2017 evaluation campaign, was to assess and promote the development of systems for generating a sense inventory of medical abbreviations. The BARR track required the detection of mentions of abbreviations or short forms and their corresponding long forms or definitions from Spanish medical abstracts. For this track, the organizers provided the BARR medical document collection, the BARR corpus of manually annotated abstracts labelled by domain experts and the BARR-Markyt evaluation platform. A total of 7 teams submitted 25 runs for the two BARR subtasks: (a) the identification of mentions of abbreviations and their definitions and (b) the correct detection of short form-long form pairs. Here we describe the BARR track setting, the obtained results and the methodologies used by participating systems. The BARR task summary, corpus, resources and evaluation tool for testing systems beyond this campaign are available at: http://temu.inab.org .We acknowledge the Encomienda MINETAD-CNIO/OTG Sanidad Plan TL and Open-Minted (654021) H2020 project for funding.Postprint (published version

    A Supervised Learning Approach to Acronym Identification

    Get PDF
    This paper addresses the task of finding acronym-definition pairs in text. Most of the previous work on the topic is about systems that involve manually generated rules or regular expressions. In this paper, we present a supervised learning approach to the acronym identification task. Our approach reduces the search space of the supervised learning system by putting some weak constraints on the kinds of acronym-definition pairs that can be identified. We obtain results comparable to hand-crafted systems that use stronger constraints. We describe our method for reducing the search space, the features used by our supervised learning system, and our experiments with various learning schemes

    Semi-automated Ontology Generation for Biocuration and Semantic Search

    Get PDF
    Background: In the life sciences, the amount of literature and experimental data grows at a tremendous rate. In order to effectively access and integrate these data, biomedical ontologies – controlled, hierarchical vocabularies – are being developed. Creating and maintaining such ontologies is a difficult, labour-intensive, manual process. Many computational methods which can support ontology construction have been proposed in the past. However, good, validated systems are largely missing. Motivation: The biocuration community plays a central role in the development of ontologies. Any method that can support their efforts has the potential to have a huge impact in the life sciences. Recently, a number of semantic search engines were created that make use of biomedical ontologies for document retrieval. To transfer the technology to other knowledge domains, suitable ontologies need to be created. One area where ontologies may prove particularly useful is the search for alternative methods to animal testing, an area where comprehensive search is of special interest to determine the availability or unavailability of alternative methods. Results: The Dresden Ontology Generator for Directed Acyclic Graphs (DOG4DAG) developed in this thesis is a system which supports the creation and extension of ontologies by semi-automatically generating terms, definitions, and parent-child relations from text in PubMed, the web, and PDF repositories. The system is seamlessly integrated into OBO-Edit and ProtĂ©gĂ©, two widely used ontology editors in the life sciences. DOG4DAG generates terms by identifying statistically significant noun-phrases in text. For definitions and parent-child relations it employs pattern-based web searches. Each generation step has been systematically evaluated using manually validated benchmarks. The term generation leads to high quality terms also found in manually created ontologies. Definitions can be retrieved for up to 78% of terms, child ancestor relations for up to 54%. No other validated system exists that achieves comparable results. To improve the search for information on alternative methods to animal testing an ontology has been developed that contains 17,151 terms of which 10% were newly created and 90% were re-used from existing resources. This ontology is the core of Go3R, the first semantic search engine in this field. When a user performs a search query with Go3R, the search engine expands this request using the structure and terminology of the ontology. The machine classification employed in Go3R is capable of distinguishing documents related to alternative methods from those which are not with an F-measure of 90% on a manual benchmark. Approximately 200,000 of the 19 million documents listed in PubMed were identified as relevant, either because a specific term was contained or due to the automatic classification. The Go3R search engine is available on-line under www.Go3R.org

    Spanish named entity recognition in the biomedical domain

    Get PDF
    Named Entity Recognition in the clinical domain and in languages different from English has the difficulty of the absence of complete dictionaries, the informality of texts, the polysemy of terms, the lack of accordance in the boundaries of an entity, the scarcity of corpora and of other resources available. We present a Named Entity Recognition method for poorly resourced languages. The method was tested with Spanish radiology reports and compared with a conditional random fields system.Peer ReviewedPostprint (author's final draft
    • 

    corecore