495 research outputs found

    Operating procedure for the production of the Global Human Settlement Layer from Landsat data of the epochs 1975, 1990, 2000, and 2014

    Get PDF
    A new global information baseline describing the spatial evolution of the human settlements in the past 40 years is presented. It is the most spatially global detailed data available today dedicated to human settlements, and it shows the greatest temporal depth. The core processing methodology relies on a new supervised classification paradigm based on symbolic machine learning. The information is extracted from Landsat image records organized in four collections corresponding to the epochs 1975, 1990, 2000, and 2014. The experiment reported here is the first known attempt to exploit global Multispectral Scanner data for historical land cover assessment. As primary goal, the Landsat-made Global Human Settlement Layer (GHSL) reports about the presence of built-up areas in the different epochs at the spatial resolution allowed by the Landsat sensor. Preliminary tests confirm that the quality of the information on built-up areas delivered by GHSL is better than other available global information layers extracted by automatic processing from Earth Observation data. An experimental multiple-class land-cover product is also produced from the epoch 2014 collection using low-resolution space-derived products as training set. The classification schema of the settlement distinguishes built-up areas based on vegetation contents and volume of buildings, the latter estimated from integration of SRTM and ASTER-GDEM data. On the overall, the experiment demonstrated a step forward in production of land cover information from global fine-scale satellite data using automatic and reproducible methodology.JRC.G.2-Global security and crisis managemen

    An Evolutionary Approach to Adaptive Image Analysis for Retrieving and Long-term Monitoring Historical Land Use from Spatiotemporally Heterogeneous Map Sources

    Get PDF
    Land use changes have become a major contributor to the anthropogenic global change. The ongoing dispersion and concentration of the human species, being at their orders unprecedented, have indisputably altered Earth’s surface and atmosphere. The effects are so salient and irreversible that a new geological epoch, following the interglacial Holocene, has been announced: the Anthropocene. While its onset is by some scholars dated back to the Neolithic revolution, it is commonly referred to the late 18th century. The rapid development since the industrial revolution and its implications gave rise to an increasing awareness of the extensive anthropogenic land change and led to an urgent need for sustainable strategies for land use and land management. By preserving of landscape and settlement patterns at discrete points in time, archival geospatial data sources such as remote sensing imagery and historical geotopographic maps, in particular, could give evidence of the dynamic land use change during this crucial period. In this context, this thesis set out to explore the potentials of retrospective geoinformation for monitoring, communicating, modeling and eventually understanding the complex and gradually evolving processes of land cover and land use change. Currently, large amounts of geospatial data sources such as archival maps are being worldwide made online accessible by libraries and national mapping agencies. Despite their abundance and relevance, the usage of historical land use and land cover information in research is still often hindered by the laborious visual interpretation, limiting the temporal and spatial coverage of studies. Thus, the core of the thesis is dedicated to the computational acquisition of geoinformation from archival map sources by means of digital image analysis. Based on a comprehensive review of literature as well as the data and proposed algorithms, two major challenges for long-term retrospective information acquisition and change detection were identified: first, the diversity of geographical entity representations over space and time, and second, the uncertainty inherent to both the data source itself and its utilization for land change detection. To address the former challenge, image segmentation is considered a global non-linear optimization problem. The segmentation methods and parameters are adjusted using a metaheuristic, evolutionary approach. For preserving adaptability in high level image analysis, a hybrid model- and data-driven strategy, combining a knowledge-based and a neural net classifier, is recommended. To address the second challenge, a probabilistic object- and field-based change detection approach for modeling the positional, thematic, and temporal uncertainty adherent to both data and processing, is developed. Experimental results indicate the suitability of the methodology in support of land change monitoring. In conclusion, potentials of application and directions for further research are given

    Global spatial and temporal analysis of human settlements from Optical Earth Observation: Concepts, procedures, and preliminary results

    Get PDF
    This report provides an overview on the concepts, processing procedures and examples used to quantify changes in built-up land from optical satellite imagery. This is part of the larger work of the Global Human Settlement (GHS) team from the Joint Research Centre (JRC) that aims to measure the spatial extent of global human settlements, to monitor its changes over time and characterize the morphology of settlements. This built-up change analysis addresses the quantification of urbanization including some socio-economic and physical processes associated with urbanization. This includes the quantification of the building stock for modeling physical exposure in disaster risk modeling, as background layer for emergency response when a disaster unfolds and as background building stock layer for normalizing physical loss data. Based on the application of three of the most used change detection methods, Principal Component Analysis, Image Differencing Comparison, and Post-Classification Comparison, we present and discuss preliminary results, and try to identify future research directions for developing an appropriate approach for GHSL result images. The case studies were carried on Alger and Dublin city areas.JRC.G.2-Global security and crisis managemen

    A methodology to produce geographical information for land planning using very-high resolution images

    Get PDF
    Actualmente, os municípios são obrigados a produzir, no âmbito da elaboração dos instrumentos de gestão territorial, cartografia homologada pela autoridade nacional. O Plano Director Municipal (PDM) tem um período de vigência de 10 anos. Porém, no que diz respeito à cartografia para estes planos, principalmente em municípios onde a pressão urbanística é elevada, esta periodicidade não é compatível com a dinâmica de alteração de uso do solo. Emerge assim, a necessidade de um processo de produção mais eficaz, que permita a obtenção de uma nova cartografia de base e temática mais frequentemente. Em Portugal recorre-se à fotografia aérea como informação de base para a produção de cartografia de grande escala. Por um lado, embora este suporte de informação resulte em mapas bastante rigorosos e detalhados, a sua produção têm custos muito elevados e consomem muito tempo. As imagens de satélite de muito alta-resolução espacial podem constituir uma alternativa, mas sem substituir as fotografias aéreas na produção de cartografia temática, a grande escala. O tema da tese trata assim da satisfação das necessidades municipais em informação geográfica actualizada. Para melhor conhecer o valor e utilidade desta informação, realizou-se um inquérito aos municípios Portugueses. Este passo foi essencial para avaliar a pertinência e a utilidade da introdução de imagens de satélite de muito alta-resolução espacial na cadeia de procedimentos de actualização de alguns temas, quer na cartografia de base quer na cartografia temática. A abordagem proposta para solução do problema identificado baseia-se no uso de imagens de satélite e outros dados digitais em ambiente de Sistemas de Informação Geográfica. A experimentação teve como objectivo a extracção automática de elementos de interesse municipal a partir de imagens de muito alta-resolução espacial (fotografias aéreas ortorectificadas, imagem QuickBird, e imagem IKONOS), bem como de dados altimétricos (dados LiDAR). Avaliaram-se as potencialidades da informação geográfica extraídas das imagens para fins cartográficos e analíticos. Desenvolveram-se quatro casos de estudo que reflectem diferentes usos para os dados geográficos a nível municipal, e que traduzem aplicações com exigências diferentes. No primeiro caso de estudo, propõe-se uma metodologia para actualização periódica de cartografia a grande escala, que faz uso de fotografias aéreas vi ortorectificadas na área da Alta de Lisboa. Esta é uma aplicação quantitativa onde as qualidades posicionais e geométricas dos elementos extraídos são mais exigentes. No segundo caso de estudo, criou-se um sistema de alarme para áreas potencialmente alteradas, com recurso a uma imagem QuickBird e dados LiDAR, no Bairro da Madre de Deus, com objectivo de auxiliar a actualização de cartografia de grande escala. No terceiro caso de estudo avaliou-se o potencial solar de topos de edifícios nas Avenidas Novas, com recurso a dados LiDAR. No quarto caso de estudo, propõe-se uma série de indicadores municipais de monitorização territorial, obtidos pelo processamento de uma imagem IKONOS que cobre toda a área do concelho de Lisboa. Esta é uma aplicação com fins analíticos onde a qualidade temática da extracção é mais relevante.Currently, the Portuguese municipalities are required to produce homologated cartography, under the Territorial Management Instruments framework. The Municipal Master Plan (PDM) has to be revised every 10 years, as well as the topographic and thematic maps that describe the municipal territory. However, this period is inadequate for representing counties where urban pressure is high, and where the changes in the land use are very dynamic. Consequently, emerges the need for a more efficient mapping process, allowing obtaining recent geographic information more often. Several countries, including Portugal, continue to use aerial photography for large-scale mapping. Although this data enables highly accurate maps, its acquisition and visual interpretation are very costly and time consuming. Very-High Resolution (VHR) satellite imagery can be an alternative data source, without replacing the aerial images, for producing large-scale thematic cartography. The focus of the thesis is the demand for updated geographic information in the land planning process. To better understand the value and usefulness of this information, a survey of all Portuguese municipalities was carried out. This step was essential for assessing the relevance and usefulness of the introduction of VHR satellite imagery in the chain of procedures for updating land information. The proposed methodology is based on the use of VHR satellite imagery, and other digital data, in a Geographic Information Systems (GIS) environment. Different algorithms for feature extraction that take into account the variation in texture, color and shape of objects in the image, were tested. The trials aimed for automatic extraction of features of municipal interest, based on aerial and satellite high-resolution (orthophotos, QuickBird and IKONOS imagery) as well as elevation data (altimetric information and LiDAR data). To evaluate the potential of geographic information extracted from VHR images, two areas of application were identified: mapping and analytical purposes. Four case studies that reflect different uses of geographic data at the municipal level, with different accuracy requirements, were considered. The first case study presents a methodology for periodic updating of large-scale maps based on orthophotos, in the area of Alta de Lisboa. This is a situation where the positional and geometric accuracy of the extracted information are more demanding, since technical mapping standards must be complied. In the second case study, an alarm system that indicates the location of potential changes in building areas, using a QuickBird image and LiDAR data, was developed for the area of Bairro da Madre de Deus. The goal of the system is to assist the updating of large scale mapping, providing a layer that can be used by the municipal technicians as the basis for manual editing. In the third case study, the analysis of the most suitable roof-tops for installing solar systems, using LiDAR data, was performed in the area of Avenidas Novas. A set of urban environment indicators obtained from VHR imagery is presented. The concept is demonstrated for the entire city of Lisbon, through IKONOS imagery processing. In this analytical application, the positional quality issue of extraction is less relevant.GEOSAT – Methodologies to extract large scale GEOgraphical information from very high resolution SATellite images (PTDC/GEO/64826/2006), e-GEO – Centro de Estudos de Geografia e Planeamento Regional, da Faculdade de Ciências Sociais e Humanas, no quadro do Grupo de Investigação Modelação Geográfica, Cidades e Ordenamento do Territóri

    Global Human Settlement Analysis for Disaster Risk Reduction

    Get PDF
    The Global Human Settlement Layer (GHSL) is supported by the European Commission, Joint Research Center (JRC) in the frame of his institutional research activities. Scope of GHSL is developing, testing and applying the technologies and analysis methods integrated in the JRC Global Human Settlement analysis platform for applications in support to global disaster risk reduction initiatives (DRR) and regional analysis in the frame of the European Cohesion policy. GHSL analysis platform uses geo-spatial data, primarily remotely sensed and population. GHSL also cooperates with the Group on Earth Observation on SB-04-Global Urban Observation and Information, and various international partners andWorld Bank and United Nations agencies. Some preliminary results integrating global human settlement information extracted from Landsat data records of the last 40 years and population data are presented.JRC.G.2-Global security and crisis managemen

    Satellite Image Based Classification Mapping For Spatially Analyzing West Virginia Corridor H Urban Development

    Get PDF
    The study area for this project is Corridor H, a designated Appalachian Development Highway located in Lewis, Upshur, Barbour Counties which are part of the Appalachian Plateau Province, and Randolph, Tucker, Grant and Hardy Counties which are Part of the Ridge and Valley Province in West Virginia. The region has a long history of occupation and a traditional economic structure consisting of mainly agriculture, timbering and coal mining. The final objective of the study was to perform change detection, using two Landsat datasets obtained from the USGS of the study area from 1987 and 2005 to determine if economic development, via change to cropland/ pasture and Urban Built Up Areas, could be measured and detected along Corridor H by using remote sensing techniques. Geometric Registration, Principal Component Analysis, Radiometric Normalization, Accuracy Analysis, Unsupervised Classification, and Spatial Analysis logical operators were utilized in IDRISI, ERMapper, and ESRI to complete the study. The total land change for the study area for Urban was 1.4% of the total 2,573,351 acres and 4.9% for change in Cropland/Pasture. More significantly there is a 2.7 %increase in Urban development within a 1-mile buffer around the length of Corridor H in the study area. When a buffer was placed 1-mile around Corridor H from Weston to Elkins the percentage of change increased to 4.5% for Urban areas and 7.5% for Cropland/Pasture. These results indicate economic change is occurring already along Corridor H before its completion. The development of this data will provide a baseline on which to base future studies of the area for tracking the expected economic growth of the region, and for Appalachian corridor highway systems in general. This data should be used with more traditional methods of economic impact and growth reporting and measurement, to focus these studies, and supply spatial relevance to changes in rural Appalachia

    A Global Human Settlement Layer from optical high resolution imagery - Concept and first results

    Get PDF
    A general framework for processing of high and very-high resolution imagery for creating a Global Human Settlement Layer (GHSL) is presented together with a discussion on the results of the first operational test of the production workflow. The test involved the mapping of 24.3 millions of square kilometres of the Earth surface spread over four continents, corresponding to an estimated population of 1.3 billion of people in 2010. The resolution of the input image data ranges from 0.5 to 10 meters, collected by a heterogeneous set of platforms including satellite SPOT (2 and 5), CBERS-2B, RapidEye (2 and 4), WorldView (1 and 2), GeoEye-1, QuickBird-2, Ikonos-2, and airborne sensors. Several imaging modes were tested including panchromatic, multispectral and pan-sharpened images. A new fully automatic image information extraction, generalization and mosaic workflow is presented that is based on multiscale textural and morphological image features extraction. New image feature compression and optimization are introduced, together with new learning and classification techniques allowing for the processing of HR/VHR image data using low-resolution thematic layers as reference. A new systematic approach for quality control and validation allowing global spatial and thematic consistency checking is proposed and applied. The quality of the results are discussed by sensor, by band, by resolution, and eco-regions. Critical points, lessons learned and next steps are highlighted.JRC.G.2-Global security and crisis managemen

    Earth resources: A continuing bibliography (issue 26)

    Get PDF
    This bibliography lists 480 reports, articles, and other documents introduced into the NASA scientific and technical information system between April 1, 1980 and June 30, 1980. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis

    Assessing contextual descriptive features for plot-based classification of urban areas

    Full text link
    A methodology for mapping urban land-use types integrating information from multiple data sources (high spatial resolution imagery, LiDAR data, and cadastral plots) is presented. A large set of complementary descriptive features that allow distinguishing different urban structures (historical, urban, residential, and industrial) is extracted and, after a selection process, a plot-based image classification approach applied, facilitating to directly relate the classification results and the urban descriptive parameters computed to the existent land-use/land-cover units in geospatial databases. The descriptive features are extracted by considering different hierarchical scale levels with semantic meaning in urban environments: buildings, plots, and urban blocks. Plots are characterised by means of image-based (spectral and textural), three-dimensional, and geometrical features. In addition, two groups of contextual features are defined: internal and external. Internal contextual features describe the main land cover types inside the plot (buildings and vegetation). External contextual features describe each object in terms of the properties of the urban block to which it belongs. After the evaluation in an heterogeneous Mediterranean urban area, the land-use classification accuracy values obtained show that the complementary descriptive features proposed improve the characterisation of urban typologies. A progressive introduction of the different groups of descriptive features in the classification tests show how the subsequent addition of internal and external contextual features have a positive effect by increasing the final accuracy of the urban classes considered in this study. © 2012 Elsevier B.V.The authors appreciate the financial support provided by the Spanish Ministry of Science and Innovation and FEDER in the framework of the projects CGL2009-14220 and CGL2010-19591/BTE, and the support of the Spanish Instituto Geografico Nacional (IGN).Hermosilla, T.; Ruiz Fernández, LÁ.; Recio Recio, JA.; Cambra López, M. (2012). Assessing contextual descriptive features for plot-based classification of urban areas. Landscape and Urban Planning. 106(1):124-137. doi:10.1016/j.landurbplan.2012.02.008S124137106

    Global Human Settlement Analysis for Disaster Risk Reduction

    Get PDF
    corecore