7 research outputs found

    The AGE iterative methods for solving large linear systems occurring in differential equations

    Get PDF
    The work presented in this thesis is wholly concerned with the Alternating Group Explicit (AGE) iterative methods for solving large linear systems occurring in solving Ordinary and Partial Differential Equations (ODEs and PDEs) using finite difference approximations. [Continues.

    Variational image fusion

    Get PDF
    The main goal of this work is the fusion of multiple images to a single composite that offers more information than the individual input images. We approach those fusion tasks within a variational framework. First, we present iterative schemes that are well-suited for such variational problems and related tasks. They lead to efficient algorithms that are simple to implement and well-parallelisable. Next, we design a general fusion technique that aims for an image with optimal local contrast. This is the key for a versatile method that performs well in many application areas such as multispectral imaging, decolourisation, and exposure fusion. To handle motion within an exposure set, we present the following two-step approach: First, we introduce the complete rank transform to design an optic flow approach that is robust against severe illumination changes. Second, we eliminate remaining misalignments by means of brightness transfer functions that relate the brightness values between frames. Additional knowledge about the exposure set enables us to propose the first fully coupled method that jointly computes an aligned high dynamic range image and dense displacement fields. Finally, we present a technique that infers depth information from differently focused images. In this context, we additionally introduce a novel second order regulariser that adapts to the image structure in an anisotropic way.Das Hauptziel dieser Arbeit ist die Fusion mehrerer Bilder zu einem Einzelbild, das mehr Informationen bietet als die einzelnen Eingangsbilder. Wir verwirklichen diese Fusionsaufgaben in einem variationellen Rahmen. Zunächst präsentieren wir iterative Schemata, die sich gut für solche variationellen Probleme und verwandte Aufgaben eignen. Danach entwerfen wir eine Fusionstechnik, die ein Bild mit optimalem lokalen Kontrast anstrebt. Dies ist der Schlüssel für eine vielseitige Methode, die gute Ergebnisse für zahlreiche Anwendungsbereiche wie Multispektralaufnahmen, Bildentfärbung oder Belichtungsreihenfusion liefert. Um Bewegungen in einer Belichtungsreihe zu handhaben, präsentieren wir folgenden Zweischrittansatz: Zuerst stellen wir die komplette Rangtransformation vor, um eine optische Flussmethode zu entwerfen, die robust gegenüber starken Beleuchtungsänderungen ist. Dann eliminieren wir verbleibende Registrierungsfehler mit der Helligkeitstransferfunktion, welche die Helligkeitswerte zwischen Bildern in Beziehung setzt. Zusätzliches Wissen über die Belichtungsreihe ermöglicht uns, die erste vollständig gekoppelte Methode vorzustellen, die gemeinsam ein registriertes Hochkontrastbild sowie dichte Bewegungsfelder berechnet. Final präsentieren wir eine Technik, die von unterschiedlich fokussierten Bildern Tiefeninformation ableitet. In diesem Kontext stellen wir zusätzlich einen neuen Regularisierer zweiter Ordnung vor, der sich der Bildstruktur anisotrop anpasst

    The Modelling of Biological Growth: a Pattern Theoretic Approach

    Get PDF
    Mathematical and statistical modeling and analysis of biological growth using images collected over time are important for understanding of normal and abnormal development. In computational anatomy, changes in the shape of a growing anatomical structure have been modeled by means of diffeomorphic transformations in the background coordinate space. Various image and landmark matching algorithms have been developed for inference of large transformations that perform image registration consistent with the material properties of brain anatomy under study. However, from a biological perspective, it is not material constants that regulate growth, it is the genetic control system. A pattern theoretic model called the Growth as Random Iterated Diffeomorphisims (GRID) introduced by Ulf Grenander (Brown University) constructs growth-induced transformations according to fundamental biological principles of growth. They are governed by an underlying genetic control that is expressed in terms of probability laws governing the spatial-temporal patterns of elementary cell decisions (e.g., cell division/death). This thesis addresses computational and stochastic aspects of the GRID model and develops its application to image analysis of growth. The first part of the thesis introduces the original GRID view of growth-induced deformation on a fine time scale as a composition of several, elementary, local deformations each resulting from a random cell decision, a highly localized event in space-time called a seed. A formalization of the proposed model using theory of stochastic processes is presented, namely, an approximation of the GRID model by the diffusion process and the Fokker-Planck equation describing the evolution of the probability density of seed trajectories in space-time. Its time-dependent and stationary numerical solutions reveal bimodal distribution of a random seed trajectory in space-time. The second part of the thesis considers the growth pattern on a coarse time scale which underlies visible shape changes seen in images. It is shown that such a "macroscopic" growth pattern is a solution to a deterministic integro-differential equation in the form of a diffeomorphic flow dependent on the GRID growth variables such as the probability density of cell decisions and the rate of contraction/expansion. Since the GRID variables are unobserved, they have to be estimated from image data. Using the GRID macroscopic growth equation such an estimation problem is formulated as an optimal control problem. The estimated GRID variables are optimal controls that force the image of an initial organism to be continuously transformed into the image of a grown organism. The GRID-based inference method is implemented for inference of growth properties of the Drosophila wing disc directly from confocal micrographs of Wingless gene expression patterns
    corecore