169 research outputs found

    A deep semantic vegetation health monitoring platform for citizen science imaging data

    Get PDF
    Automated monitoring of vegetation health in a landscape is often attributed to calculating values of various vegetation indexes over a period of time. However, such approaches suffer from an inaccurate estimation of vegetational change due to the over-reliance of index values on vegetation’s colour attributes and the availability of multi-spectral bands. One common observation is the sensitivity of colour attributes to seasonal variations and imaging devices, thus leading to false and inaccurate change detection and monitoring. In addition, these are very strong assumptions in a citizen science project. In this article, we build upon our previous work on developing a Semantic Vegetation Index (SVI) and expand it to introduce a semantic vegetation health monitoring platform to monitor vegetation health in a large landscape. However, unlike our previous work, we use RGB images of the Australian landscape for a quarterly series of images over six years (2015–2020). This Semantic Vegetation Index (SVI) is based on deep semantic segmentation to integrate it with a citizen science project (Fluker Post) for automated environmental monitoring. It has collected thousands of vegetation images shared by various visitors from around 168 different points located in Australian regions over six years. This paper first uses a deep learning-based semantic segmentation model to classify vegetation in repeated photographs. A semantic vegetation index is then calculated and plotted in a time series to reflect seasonal variations and environmental impacts. The results show variational trends of vegetation cover for each year, and the semantic segmentation model performed well in calculating vegetation cover based on semantic pixels (overall accuracy = 97.7%). This work has solved a number of problems related to changes in viewpoint, scale, zoom, and seasonal changes in order to normalise RGB image data collected from different image devices

    Automatic identification of charcoal origin based on deep learning

    Get PDF
    The differentiation between the charcoal produced from (Eucalyptus) plantations and native forests is essential to control, commercialization, and supervision of its production in Brazil. The main contribution of this study is to identify the charcoal origin using macroscopic images and Deep Learning Algorithm. We applied a Convolutional Neural Network (CNN) using VGG-16 architecture, with preprocessing based on contrast enhancement and data augmentation with rotation over the training set images. on the performance of the CNN with fine-tuning using 360 macroscopic charcoal images from the plantation and native forests. The results pointed out that our method provides new perspectives to identify the charcoal origin, achieving results upper 95 % of mean accuracy to classify charcoal from native forests for all compared preprocessing strategies

    Factors determining the phenomena in the uper tree line ecotone in the Polar Urals mountains

    Get PDF
    The article presents the results of the analysis of long-term studies dedicated to the reaction of woody plants to various extreme factors in the Rai-Iz mountain massif and Chernaya mountain, which are located on the southeastern slope of the Polar Urals in the Sob River basin (Russia). The analysis was performed using a unique archive of landscape photos, which were made by the authors from the beginning of the 1960s until the present. The classification and description of the phenomena that are caused by the influence of environmental factors on woody vegetation, as well as their presentation using landscape photos, allow us to expand the possibilities of using ground-based images for the purposes of environmental photo monitoring of woody vegetation at the tree line. They can be used as an independent data source to identify factors that determine a morphological structure and spatial altitude of woody vegetation

    Planning the first view: Establishing a landscape monitoring scheme based on photography

    Get PDF
    The visual impacts of landscape change are important for how people perceive landscapes and whether they consider changes to be positive or negative. Landscape photographs and photographs of landscape elements may capture information about the visual qualities of landscapes and can also be used to illustrate, and even to quantify, how these visual qualities change over time. We developed a methodology for a monitoring scheme, based on taking photographs from exactly the same locations at different points in time. We tested two methods: one where fieldworkers chose freely the location and direction of photographs, and one where photo locations and four out of five directions were predefined. We found that the method using predefined locations provided a representative sample of the visual qualities present in the landscape and was relatively person-independent but missed rare landscape components. The method using free selection of photo locations and directions captured rarities, but the content of the photos varied from photographer to photographer. Considering the strengths and weaknesses of the two approaches, we recommend a method that combines aspects of both when establishing a monitoring scheme based on repeat photography, with predefined locations to ensure that the entire area is covered, and additional freely chosen photo locations to capture special subject matter that would otherwise be missed.publishedVersio

    Identifying and mapping individual plants in a highly diverse high-elevation ecosystem using UAV imagery and deep learning

    Get PDF
    The identification and counting of plant individuals is essential for environmental monitoring. UAV based imagery offer ultra-fine spatial resolution and flexibility in data acquisition, and so provide a great opportunity to enhance current plant and in-situ field surveying. However, accurate mapping of individual plants from UAV imagery remains challenging, given the great variation in the sizes and geometries of individual plants and in their distribution. This is true even for deep learning based semantic segmentation and classification methods. In this research, a novel Scale Sequence Residual U-Net (SS Res U-Net) deep learning method was proposed, which integrates a set of Residual U-Nets with a sequence of input scales that can be derived automatically. The SS Res U-Net classifies individual plants by continuously increasing the patch scale, with features learned at small scales passing gradually to larger scales, thus, achieving multi-scale information fusion while retaining fine spatial details of interest. The SS Res U-Net was tested to identify and map frailejones (all plant species of the subtribe Espeletiinae), the dominant plants in one of the world’s most biodiverse high-elevation ecosystems (i.e. the páramos) from UAV imagery. Results demonstrate that the SS Res U-Net has the ability to self-adapt to variation in objects, and consistently achieved the highest classification accuracy (91.67% on average) compared with four state-of-the-art benchmark approaches. In addition, SS Res U-Net produced the best performances in terms of both robustness to training sample size reduction and computational efficiency compared with the benchmarks. Thus, SS Res U-Net shows great promise for solving remotely sensed semantic segmentation and classification tasks, and more general machine intelligence. The prospective implementation of this method to identify and map frailejones in the páramos will benefit immensely the monitoring of their populations for conservation assessments and management, among many other applications

    Proceedings of the 10th International Conference on Ecological Informatics: translating ecological data into knowledge and decisions in a rapidly changing world: ICEI 2018

    Get PDF
    The Conference Proceedings are an impressive display of the current scope of Ecological Informatics. Whilst Data Management, Analysis, Synthesis and Forecasting have been lasting popular themes over the past nine biannual ICEI conferences, ICEI 2018 addresses distinctively novel developments in Data Acquisition enabled by cutting edge in situ and remote sensing technology. The here presented ICEI 2018 abstracts captures well current trends and challenges of Ecological Informatics towards: • regional, continental and global sharing of ecological data, • thorough integration of complementing monitoring technologies including DNA-barcoding, • sophisticated pattern recognition by deep learning, • advanced exploration of valuable information in ‘big data’ by means of machine learning and process modelling, • decision-informing solutions for biodiversity conservation and sustainable ecosystem management in light of global changes

    Proceedings of the 10th International Conference on Ecological Informatics: translating ecological data into knowledge and decisions in a rapidly changing world: ICEI 2018

    Get PDF
    The Conference Proceedings are an impressive display of the current scope of Ecological Informatics. Whilst Data Management, Analysis, Synthesis and Forecasting have been lasting popular themes over the past nine biannual ICEI conferences, ICEI 2018 addresses distinctively novel developments in Data Acquisition enabled by cutting edge in situ and remote sensing technology. The here presented ICEI 2018 abstracts captures well current trends and challenges of Ecological Informatics towards: • regional, continental and global sharing of ecological data, • thorough integration of complementing monitoring technologies including DNA-barcoding, • sophisticated pattern recognition by deep learning, • advanced exploration of valuable information in ‘big data’ by means of machine learning and process modelling, • decision-informing solutions for biodiversity conservation and sustainable ecosystem management in light of global changes

    A review of machine learning applications in wildfire science and management

    Full text link
    Artificial intelligence has been applied in wildfire science and management since the 1990s, with early applications including neural networks and expert systems. Since then the field has rapidly progressed congruently with the wide adoption of machine learning (ML) in the environmental sciences. Here, we present a scoping review of ML in wildfire science and management. Our objective is to improve awareness of ML among wildfire scientists and managers, as well as illustrate the challenging range of problems in wildfire science available to data scientists. We first present an overview of popular ML approaches used in wildfire science to date, and then review their use in wildfire science within six problem domains: 1) fuels characterization, fire detection, and mapping; 2) fire weather and climate change; 3) fire occurrence, susceptibility, and risk; 4) fire behavior prediction; 5) fire effects; and 6) fire management. We also discuss the advantages and limitations of various ML approaches and identify opportunities for future advances in wildfire science and management within a data science context. We identified 298 relevant publications, where the most frequently used ML methods included random forests, MaxEnt, artificial neural networks, decision trees, support vector machines, and genetic algorithms. There exists opportunities to apply more current ML methods (e.g., deep learning and agent based learning) in wildfire science. However, despite the ability of ML models to learn on their own, expertise in wildfire science is necessary to ensure realistic modelling of fire processes across multiple scales, while the complexity of some ML methods requires sophisticated knowledge for their application. Finally, we stress that the wildfire research and management community plays an active role in providing relevant, high quality data for use by practitioners of ML methods.Comment: 83 pages, 4 figures, 3 table

    The global tree carrying capacity (keynote)

    Full text link
    editorial reviewe
    corecore