120 research outputs found

    Computer Aided Design of Side Actions for Injection Molding of Complex Parts

    Get PDF
    Often complex molded parts include undercuts, patches on the part boundaries that are not accessible along the main mold opening directions. Undercuts are molded by incorporating side actions in the molds. Side actions are mold pieces that are removed from the part using translation directions different than the main mold opening direction. However, side actions contribute to mold cost by resulting in an additional manufacturing and assembly cost as well as by increasing the molding cycle time. Therefore, generating shapes of side actions requires solving a complex geometric optimization problem. Different objective functions may be needed depending upon different molding scenarios (e.g., prototyping versus large production runs). Manually designing side actions is a challenging task and requires considerable expertise. Automated design of side actions will significantly reduce mold design lead times. This thesis describes algorithms for generating shapes of side actions to minimize a customizable molding cost function. Given a set of undercut facets on a polyhedral part and the main parting direction, the approach works in the following manner. First, candidate retraction space is computed for every undercut facet. This space represents the candidate set of translation vectors that can be used by the side action to completely disengage from the undercut facet. As the next step, a discrete set of feasible, non-dominated retractions is generated. Then the undercut facets are grouped into undercut regions by performing state space search over such retractions. This search step is performed by minimizing the customizable molding cost function. After identifying the undercut regions that can share a side action, the shapes of individual side actions are computed. The approach presented in this work leads to practically an optimal solution if every connected undercut region on the part requires three or fewer side actions. Results of computational experiments that have been conducted to assess the performance of the algorithms described in the thesis have also been presented. Computational results indicate that the algorithms have acceptable computational performance, are robust enough to handle complex part geometries, and are easy to implement. It is anticipated that the results shown here will provide the foundations for developing fully automated software for designing side actions in injection molding

    Investigating the Impact of Susceptibility Artifacts on Adjacent Tumors in PET/MRI through Simulated Tomography Experiments

    Get PDF
    For quantitative PET imaging, attenuation correction (AC) is mandatory. Currently, all main vendors of hybrid PET/MRI systems apply a segmentation-based approach to compute a Dixon AC-map based on fat and water images derived from in- and opposed-phase MR-images. Changes in magnetic susceptibility pose major problems for MRI, which may lead to artifacts resulting in tissue misclassification in the segmented AC-map. Cases have been reported where the liver has been misidentified as lung tissue due to iron overload, e.g. from hemochromatosis or iron oxide MR contrast agents, resulting in severe underestimation of PET-quantification. In this thesis, simulated tomography experiments were conducted to investigate the impact of susceptibility artifacts on adjacent tumors, focusing on the misclassification of liver tissue as lung tissue. A digital phantom was programmed, and synthetic tumors and artifacts were introduced into a realistic PET/MRI patient dataset. The data were reconstructed with attenuation maps both with and without artifacts to compute the relative error (RE) in tumor uptake. It was shown that relevant errors can be introduced to tumors adjacent to the artifact. A strong inverse square relationship between the distance (d) of the center points of a tumor and an artifact was found with the RE. Further, because the RE was known to be proportional to the volume (V) of misclassified tissue, it was shown that it is possible to obtain a linear equation describing the RE using only V and d. However, this assumes similar information, i.e activity and attenuation, along the common line of responses (LORs) of the artifact and tumor. A correction method was developed to correct for lung-liver misclassifications. The proposed method uses the already acquired opposed-phase Dixon images, which are less sensitive to susceptibility changes. It successfully corrected 96% of misclassified tissue down to a 50% MR-signal reduction from the liver. The method benefits from using already acquired data to correct the artifacts, and may be made fully automatic to function in real-time

    Procedimiento para el anĂĄlisis automatizado de la manufactura de la pieza de plĂĄstico y del molde de inyecciĂłn

    Get PDF
    El proceso de manufactura mediante moldes de inyecciĂłn de plĂĄstico es uno de los mĂ©todos de producciĂłn mĂĄs versĂĄtiles y extendidos para la fabricaciĂłn de piezas de plĂĄstico. Actualmente, existe una amplia variedad de software tipo CAD/CAE/CAM para el anĂĄlisis y diseño asistido de piezas de plĂĄstico y moldes de inyecciĂłn. Sin embargo, estas herramientas comerciales aĂșn requieren de interacciĂłn humana y acceso a informaciĂłn geomĂ©trica interna de la pieza de plĂĄstico vinculada a su modelo CAD. La presente tesis doctoral propone una metodologĂ­a universal basada en algoritmos automatizados de tipo geomĂ©trico – experto que, mediante el anĂĄlisis de la geometrĂ­a discreta de la pieza de plĂĄstico (malla en formato discreto definida por los elementos notables nodos y facetas), mejore y optimice el proceso actual de anĂĄlisis, diseño y dimensionamiento del molde de inyecciĂłn, sin recurrir a tĂ©cnicas heurĂ­sticas e interacciĂłn manual por parte del usuario.Plastic injection molding is one of the most versatile and widespread manufacturing process for the plastic parts manufacture. Nowadays, there is a wide variety of CAD/CAE/CAM type software for the analysis and aided design of plastic parts and injection molds. However, these commercial tools still require human interaction and access to internal geometric information (geometric features) of the plastic part linked to their CAD model. The present PhD thesis proposes a universal methodology based on automated geometrical - expert algorithms that, by means of the analysis of the plastic part discrete geometry (mesh in discrete format defined by notable elements nodes and facets), improve and optimize the current analysis, design and dimensioning process of the injection mold, without resorting to heuristic techniques and manual interaction by the user.Tesis Univ. JaĂ©n. Departamento IngenierĂ­a GrĂĄfica, Diseño y Proyectos. LeĂ­da el 3 de mayo de 2019

    A comparison of multiple techniques for the reconstruction of entry, descent, and landing trajectories and atmospheres

    Get PDF
    The primary importance of trajectory reconstruction is to assess the accuracy of pre-flight predictions of the entry trajectory. While numerous entry systems have flown, often these systems are not adequately instrumented or the flight team not adequately funded to perform the statistical engineering reconstruction required to quantify performance and feed-forward lessons learned into future missions. As such, entry system performance and reliability levels remain unsubstantiated and improvement in aerothermodynamic and flight dynamics modeling remains data poor. The comparison is done in an effort to quantitatively and qualitatively compare Kalman filtering methods of reconstructing trajectories and atmospheric conditions from entry systems flight data. The first Kalman filter used is the extended Kalman filter. Extended Kalman filtering has been used extensively in trajectory reconstruction both for orbiting spacecraft and for planetary probes. The second Kalman filter is the unscented Kalman filter. Additionally, a technique for using collocation to reconstruct trajectories is formulated, and collocation's usefulness for trajectory simulation is demonstrated for entry, descent, and landing trajectories using a method developed here to deterministically find the state variables of the trajectory without nonlinear programming. Such an approach could allow one to utilize the same collocation trajectory design tools for the subsequent reconstruction.Ph.D.Committee Chair: Braun, Robert; Committee Member: Lisano, Michael; Committee Member: Russell, Ryan; Committee Member: Striepe, Scott; Committee Member: Volovoi, Vital

    Fault-Tolerant Vision for Vehicle Guidance in Agriculture

    Get PDF

    Optimal trajectory design for interception and deflection of Near Earth Objects

    Get PDF
    Many asteroids and comets orbit the inner solar system; among them Near Earth Objects (NEOs) are those celestial bodies for which the orbit lies close, and sometimes crosses, the Earth's orbit. Over the last decades the impact hazard they pose to the Earth has generated heated discussions on the required measures to react to such a scenario. The aim of the research presented in this dissertation is to develop methodologies for the trajectory design of interception and deflection missions to Near Earth Objects. The displacement, following a deflection manoeuvre, of the asteroid at the minimum orbit intersection distance with the Earth is expressed by means of a simple and general formulation, which exploits the relative motion equations and Gauss' equations. The variation of the orbital elements achieved by any impulsive or low-thrust action on the threatening body is derived through a semi-analytical approach, whose accuracy is extensively shown. This formulation allows the analysis of the optimal direction of the deflection manoeuvre to maximise the achievable deviation. The search for optimal opportunities for mitigation missions is done through a global optimisation approach. The transfer trajectory, modelled through preliminary design techniques, is integrated with the deflection model. In this way, the mission planning can be performed by optimising different contrasting criteria, such as the mass at launch, the warning time, and the total deflection. A set of Pareto fronts is computed for different deflection strategies and considering various asteroid mitigation scenarios. Each Pareto set represents a number of mission opportunities, over a wide domain of launch windows and design parameters. A first set of results focuses on impulsive deflection missions, to a selected group of potentially hazardous asteroids; the analysis shows that the ideal optimal direction of the deflection manoeuvre cannot always be achieved when the transfer trajectory is integrated with the deflection phase. A second set of results includes solutions for the deviation of some selected NEOs by means of a solar collector strategy. The semi-analytical formulation derived allows the reduction of the computational time, hence the generation of a large number of solutions. Moreover, sets of Pareto fronts for asteroid mitigation are computed through the more feasible deflection schemes proposed in literature: kinetic impactor, nuclear interceptor, mass driver device, low-thrust attached propulsion, solar collector, and gravity tug. A dominance criterion is used to perform a comparative assessment of these mitigation strategies, while also considering the required technological development through a technology readiness factor. The global search of solutions through a multi-criteria optimisation approach represents the first stage of the mission planning, in which preliminary design techniques are used for the trajectory model. At a second stage, a selected number of trajectories can be optimised, using a refined model of the dynamics. For this purpose, the use of Differential Dynamic Programming (DDP) is investigated for the solution of the optimal control problem associated to the design of low-thrust trajectories. The stage-wise approach of DDP is exploited to integrate an adaptive step discretisation scheme within the optimisation process. The discretisation mesh is adjusted at each iteration, to assure high accuracy of the solution trajectory and hence fully exploit the dynamics of the problem within the optimisation process. The feedback nature of the control law is preserved, through a particular interpolation technique that improves the robustness against some approximation errors. The modified DDP-method is presented and applied to the design of transfer trajectories to the fly-by or rendezvous of NEOs, including the escape phase at the Earth. The DDP approach allows the optimisation of the trajectory as a whole, without recurring to the patched conic approach. The results show how the proposed method is capable of fully exploiting the multi-body dynamics of the problem; in fact, in one of the study cases, a fly-by of the Earth is scheduled, which was not included in the first guess solution

    Multitarget tracking and terrain-aided navigation using square-root consider filters

    Get PDF
    Filtering is a term used to describe methods that estimate the values of partially observed states, such as the position, velocity, and attitude of a vehicle, using current observations that are corrupted due to various sources, such as measurement noise, transmission dropouts, and spurious information. The study of filtering has been an active focus of research for decades, and the resulting filters have been the cornerstone of many of humankind\u27s greatest technological achievements. However, these achievements are enabled principally by the use of specialized techniques that seek to, in some way, combat the negative impacts that processor roundoff and truncation error have on filtering. Two of these specialized techniques are known as square-root filters and consider filters. The former alleviates the fragility induced from estimating error covariance matrices by, instead, managing a factorized representation of that matrix, known as a square-root factor. The latter chooses to account for the statistical impacts a troublesome system parameter has on the overall state estimate without directly estimating it, and the result is a substantial reduction in numerical sensitivity to errors in that parameter. While both of these techniques have found widespread use in practical application, they have never been unified in a common square-root consider framework. Furthermore, consider filters are historically rooted to standard, vector-valued estimation techniques, and they have yet to be generalized to the emerging, set-valued estimation tools for multitarget tracking. In this dissertation, formulae for the square-root consider filter are derived, and the result is extended to finite set statistics-based multitarget tracking tools. These results are used to propose a terrain-aided navigation concept wherein data regarding a vehicle\u27s environment is used to improve its state estimate, and square-root consider techniques provide the numerical stability necessary for an onboard navigation application. The newly developed square-root consider techniques are shown to be much more stable than standard formulations, and the terrain-aided navigation concept is applied to a lunar landing scenario to illustrate its applicability to navigating in challenging environments --Abstract, page iii

    Optimal trajectory design for interception and deflection of Near Earth Objects

    Get PDF
    Many asteroids and comets orbit the inner solar system; among them Near Earth Objects (NEOs) are those celestial bodies for which the orbit lies close, and sometimes crosses, the Earth’s orbit. Over the last decades the impact hazard they pose to the Earth has generated heated discussions on the required measures to react to such a scenario. The aim of the research presented in this dissertation is to develop methodologies for the trajectory design of interception and deflection missions to Near Earth Objects. The displacement, following a deflection manoeuvre, of the asteroid at the minimum orbit intersection distance with the Earth is expressed by means of a simple and general formulation, which exploits the relative motion equations and Gauss’ equations. The variation of the orbital elements achieved by any impulsive or low-thrust action on the threatening body is derived through a semi-analytical approach, whose accuracy is extensively shown. This formulation allows the analysis of the optimal direction of the deflection manoeuvre to maximise the achievable deviation. The search for optimal opportunities for mitigation missions is done through a global optimisation approach. The transfer trajectory, modelled through preliminary design techniques, is integrated with the deflection model. In this way, the mission planning can be performed by optimising different contrasting criteria, such as the mass at launch, the warning time, and the total deflection. A set of Pareto fronts is computed for different deflection strategies and considering various asteroid mitigation scenarios. Each Pareto set represents a number of mission opportunities, over a wide domain of launch windows and design parameters. A first set of results focuses on impulsive deflection missions, to a selected group of potentially hazardous asteroids; the analysis shows that the ideal optimal direction of the deflection manoeuvre cannot always be achieved when the transfer trajectory is integrated with the deflection phase. A second set of results includes solutions for the deviation of some selected NEOs by means of a solar collector strategy. The semi-analytical formulation derived allows the reduction of the computational time, hence the generation of a large number of solutions. Moreover, sets of Pareto fronts for asteroid mitigation are computed through the more feasible deflection schemes proposed in literature: kinetic impactor, nuclear interceptor, mass driver device, low-thrust attached propulsion, solar collector, and gravity tug. A dominance criterion is used to perform a comparative assessment of these mitigation strategies, while also considering the required technological development through a technology readiness factor. The global search of solutions through a multi-criteria optimisation approach represents the first stage of the mission planning, in which preliminary design techniques are used for the trajectory model. At a second stage, a selected number of trajectories can be optimised, using a refined model of the dynamics. For this purpose, the use of Differential Dynamic Programming (DDP) is investigated for the solution of the optimal control problem associated to the design of low-thrust trajectories. The stage-wise approach of DDP is exploited to integrate an adaptive step discretisation scheme within the optimisation process. The discretisation mesh is adjusted at each iteration, to assure high accuracy of the solution trajectory and hence fully exploit the dynamics of the problem within the optimisation process. The feedback nature of the control law is preserved, through a particular interpolation technique that improves the robustness against some approximation errors. The modified DDP-method is presented and applied to the design of transfer trajectories to the fly-by or rendezvous of NEOs, including the escape phase at the Earth. The DDP approach allows the optimisation of the trajectory as a whole, without recurring to the patched conic approach. The results show how the proposed method is capable of fully exploiting the multi-body dynamics of the problem; in fact, in one of the study cases, a fly-by of the Earth is scheduled, which was not included in the first guess solution

    Sensors, measurement fusion and missile trajectory optimisation

    Get PDF
    When considering advances in “smart” weapons it is clear that air-launched systems have adopted an integrated approach to meet rigorous requirements, whereas air-defence systems have not. The demands on sensors, state observation, missile guidance, and simulation for air-defence is the subject of this research. Historical reviews for each topic, justification of favoured techniques and algorithms are provided, using a nomenclature developed to unify these disciplines. Sensors selected for their enduring impact on future systems are described and simulation models provided. Complex internal systems are reduced to simpler models capable of replicating dominant features, particularly those that adversely effect state observers. Of the state observer architectures considered, a distributed system comprising ground based target and own-missile tracking, data up-link, and on-board missile measurement and track fusion is the natural choice for air-defence. An IMM is used to process radar measurements, combining the estimates from filters with different target dynamics. The remote missile state observer combines up-linked target tracks and missile plots with IMU and seeker data to provide optimal guidance information. The performance of traditional PN and CLOS missile guidance is the basis against which on-line trajectory optimisation is judged. Enhanced guidance laws are presented that demand more from the state observers, stressing the importance of time-to-go and transport delays in strap-down systems employing staring array technology. Algorithms for solving the guidance twopoint boundary value problems created from the missile state observer output using gradient projection in function space are presented. A simulation integrating these aspects was developed whose infrastructure, capable of supporting any dynamical model, is described in the air-defence context. MBDA have extended this work creating the Aircraft and Missile Integration Simulation (AMIS) for integrating different launchers and missiles. The maturity of the AMIS makes it a tool for developing pre-launch algorithms for modern air-launched missiles from modern military aircraft.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    • 

    corecore