129 research outputs found

    Automatic Pulmonary Nodule Detection in CT Scans Using Convolutional Neural Networks Based on Maximum Intensity Projection

    Get PDF
    Accurate pulmonary nodule detection is a crucial step in lung cancer screening. Computer-aided detection (CAD) systems are not routinely used by radiologists for pulmonary nodule detection in clinical practice despite their potential benefits. Maximum intensity projection (MIP) images improve the detection of pulmonary nodules in radiological evaluation with computed tomography (CT) scans. Inspired by the clinical methodology of radiologists, we aim to explore the feasibility of applying MIP images to improve the effectiveness of automatic lung nodule detection using convolutional neural networks (CNNs). We propose a CNN-based approach that takes MIP images of different slab thicknesses (5 mm, 10 mm, 15 mm) and 1 mm axial section slices as input. Such an approach augments the two-dimensional (2-D) CT slice images with more representative spatial information that helps discriminate nodules from vessels through their morphologies. Our proposed method achieves sensitivity of 92.67% with 1 false positive per scan and sensitivity of 94.19% with 2 false positives per scan for lung nodule detection on 888 scans in the LIDC-IDRI dataset. The use of thick MIP images helps the detection of small pulmonary nodules (3 mm-10 mm) and results in fewer false positives. Experimental results show that utilizing MIP images can increase the sensitivity and lower the number of false positives, which demonstrates the effectiveness and significance of the proposed MIP-based CNNs framework for automatic pulmonary nodule detection in CT scans. The proposed method also shows the potential that CNNs could gain benefits for nodule detection by combining the clinical procedure.Comment: Submitted to IEEE TM

    Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: The LUNA16 challenge

    Get PDF
    Automatic detection of pulmonary nodules in thoracic computed tomography (CT) scans has been an active area of research for the last two decades. However, there have only been few studies that provide a comparative performance evaluation of different systems on a common database. We have therefore set up the LUNA16 challenge, an objective evaluation framework for automatic nodule detection algorithms using the largest publicly available reference database of chest CT scans, the LIDC-IDRI data set. In LUNA16, participants develop their algorithm and upload their predictions on 888 CT scans in one of the two tracks: 1) the complete nodule detection track where a complete CAD system should be developed, or 2) the false positive reduction track where a provided set of nodule candidates should be classified. This paper describes the setup of LUNA16 and presents the results of the challenge so far. Moreover, the impact of combining individual systems on the detection performance was also investigated. It was observed that the leading solutions employed convolutional networks and used the provided set of nodule candidates. The combination of these solutions achieved an excellent sensitivity of over 95% at fewer than 1.0 false positives per scan. This highlights the potential of combining algorithms to improve the detection performance. Our observer study with four expert readers has shown that the best system detects nodules that were missed by expert readers who originally annotated the LIDC-IDRI data. We released this set of additional nodules for further development of CAD systems

    Noninvasive Risk Stratification of Lung Adenocarcinoma using Quantitative Computed Tomography

    Get PDF
    IntroductionLung cancer remains the leading cause of cancer-related deaths in the United States and worldwide. Adenocarcinoma is the most common type of lung cancer and encompasses lesions with widely variable clinical outcomes. In the absence of noninvasive risk stratification, individualized patient management remains challenging. Consequently a subgroup of pulmonary nodules of the lung adenocarcinoma spectrum is likely treated more aggressively than necessary.MethodsConsecutive patients with surgically resected pulmonary nodules of the lung adenocarcinoma spectrum (lesion size ⩽3 cm, 2006–2009) and available presurgical high-resolution computed tomography (HRCT) imaging were identified at Mayo Clinic Rochester. All cases were classified using an unbiased Computer-Aided Nodule Assessment and Risk Yield (CANARY) approach based on the quantification of presurgical HRCT characteristics. CANARY-based classification was independently correlated to postsurgical progression-free survival.ResultsCANARY analysis of 264 consecutive patients identified three distinct subgroups. Independent comparisons of 5-year disease-free survival (DFS) between these subgroups demonstrated statistically significant differences in 5-year DFS, 100%, 72.7%, and 51.4%, respectively (p = 0.0005).ConclusionsNoninvasive CANARY-based risk stratification identifies subgroups of patients with pulmonary nodules of the adenocarcinoma spectrum characterized by distinct clinical outcomes. This technique may ultimately improve the current expert opinion-based approach to the management of these lesions by facilitating individualized patient management

    Prospective intra-individual comparison of standard dose versus reduced-dose thoracic CT using hybrid and pure iterative reconstruction in a follow-up cohort of pulmonary nodules—Effect of detectability of pulmonary nodules with lowering dose based on nodule size, type and body mass index

    Get PDF
    publisher: Elsevier articletitle: Prospective intra-individual comparison of standard dose versus reduced-dose thoracic CT using hybrid and pure iterative reconstruction in a follow-up cohort of pulmonary nodules—Effect of detectability of pulmonary nodules with lowering dose based on nodule size, type and body mass index journaltitle: European Journal of Radiology articlelink: http://dx.doi.org/10.1016/j.ejrad.2017.04.006 content_type: article copyright: © 2017 Elsevier B.V. All rights reserved

    Measurement Variability in Treatment Response Determination for Non-Small Cell Lung Cancer: Improvements using Radiomics

    Get PDF
    Multimodality imaging measurements of treatment response are critical for clinical practice, oncology trials, and the evaluation of new treatment modalities. The current standard for determining treatment response in non-small cell lung cancer (NSCLC) is based on tumor size using the RECIST criteria. Molecular targeted agents and immunotherapies often cause morphological change without reduction of tumor size. Therefore, it is difficult to evaluate therapeutic response by conventional methods. Radiomics is the study of cancer imaging features that are extracted using machine learning and other semantic features. This method can provide comprehensive information on tumor phenotypes and can be used to assess therapeutic response in this new age of immunotherapy. Delta radiomics, which evaluates the longitudinal changes in radiomics features, shows potential in gauging treatment response in NSCLC. It is well known that quantitative measurement methods may be subject to substantial variability due to differences in technical factors and require standardization. In this review, we describe measurement variability in the evaluation of NSCLC and the emerging role of radiomics. © 2019 Wolters Kluwer Health, Inc. All rights reserved

    Quantitative CT analysis for predicting the behavior of part-solid nodules with solid components less than 6 mm: Size, density and shape descriptors

    Get PDF
    7noopenopenBorghesi A.; Scrimieri A.; Michelini S.; Calandra G.; Golemi S.; Tironi A.; Maroldi R.Borghesi, A.; Scrimieri, A.; Michelini, S.; Calandra, Giulio; Golemi, Salvatore; Tironi, A.; Maroldi, R

    Lung nodules: size still matters

    Get PDF
    The incidence of indeterminate pulmonary nodules has risen constantly over the past few years. Determination of lung nodule malignancy is pivotal, because the early diagnosis of lung cancer could lead to a definitive intervention. According to the current international guidelines, size and growth rate represent the main indicators to determine the nature of a pulmonary nodule. However, there are some limitations in evaluating and characterising nodules when only their dimensions are taken into account. There is no single method for measuring nodules, and intrinsic errors, which can determine variations in nodule measurement and in growth assessment, do exist when performing measurements either manually or with automated or semi-automated methods. When considering subsolid nodules the presence and size of a solid component is the major determinant of malignancy and nodule management, as reported in the latest guidelines. Nevertheless, other nodule morphological characteristics have been associated with an increased risk of malignancy. In addition, the clinical context should not be overlooked in determining the probability of malignancy. Predictive models have been proposed as a potential means to overcome the limitations of a sized-based assessment of the malignancy risk for indeterminate pulmonary nodules

    Computer-aided detection of pulmonary nodules: a comparative study using the public LIDC/IDRI database

    Get PDF
    Objectives: To benchmark the performance of state-of-the-art computer-aided detection (CAD) of pulmonary nodules using the largest publicly available annotated CT database (LIDC/IDRI), and to show that CAD finds lesions not identified by the LIDC’s four-fold double reading process. Methods: The LIDC/IDRI database contains 888 thoracic CT scans with a section thickness of 2.5 mm or lower. We report performance of two commercial and one academic CAD system. The influence of presence of contrast, section thickness, and reconstruction kernel on CAD performance was assessed. Four radiologists independently analyzed the false positive CAD marks of the best CAD system. Results: The updated commercial CAD system showed the best performance with a sensitivity of 82 % at an average of 3.1 false positive detections per scan. Forty-five false positive CAD marks were scored as nodules by all four radiologists in our study. Conclusions: On the largest publicly available reference database for lung nodule detection in chest CT, the updated commercial CAD system locates the vast majority of pulmonary nodules at a low false positive rate. Potential for CAD is substantiated by the fact that it identifies pulmonary nodules that were not marked during the extensive four-fold LIDC annotation process
    • …
    corecore