5 research outputs found

    TelsNet: temporal lesion network embedding in a transformer model to detect cervical cancer through colposcope images

    Get PDF
    Cervical cancer ranks as the fourth most prevalent malignancy among women globally. Timely identification and intervention in cases of cervical cancer hold the potential for achieving complete remission and cure. In this study, we built a deep learning model based on self-attention mechanism using transformer architecture to classify the cervix images to help in diagnosis of cervical cancer. We have used techniques like an enhanced multivariate gaussian mixture model optimized with mexican axolotl algorithm for segmenting the colposcope images prior to the Temporal Lesion Convolution Neural Network (TelsNet) classifying the images. TelsNet is a transformer-based neural network that uses temporal convolutional neural networks to identify cancerous regions in colposcope images. Our experiments show that TelsNet achieved an accuracy of 92.7%, with a sensitivity of 73.4% and a specificity of 82.1%. We compared the performance of our model with various state-of-the-art methods, and our results demonstrate that TelsNet outperformed the other methods. The findings have the potential to significantly simplify the process of detecting and accurately classifying cervical cancers at an early stage, leading to improved rates of remission and better overall outcomes for patients globally

    The Artificial Intelligence in Digital Pathology and Digital Radiology: Where Are We?

    Get PDF
    This book is a reprint of the Special Issue entitled "The Artificial Intelligence in Digital Pathology and Digital Radiology: Where Are We?". Artificial intelligence is extending into the world of both digital radiology and digital pathology, and involves many scholars in the areas of biomedicine, technology, and bioethics. There is a particular need for scholars to focus on both the innovations in this field and the problems hampering integration into a robust and effective process in stable health care models in the health domain. Many professionals involved in these fields of digital health were encouraged to contribute with their experiences. This book contains contributions from various experts across different fields. Aspects of the integration in the health domain have been faced. Particular space was dedicated to overviewing the challenges, opportunities, and problems in both radiology and pathology. Clinal deepens are available in cardiology, the hystopathology of breast cancer, and colonoscopy. Dedicated studies were based on surveys which investigated students and insiders, opinions, attitudes, and self-perception on the integration of artificial intelligence in this field

    Automatic detection of multi-level acetowhite regions in RGB color images of the uterine cervix

    No full text
    corecore