14 research outputs found

    A three-axis accelerometer for measuring heart wall motion

    Get PDF
    This thesis presents the work carried out in the design, simulation, fabrication and testing of miniaturised three-axis accelerometers. The work was carried out at the Faculty of Science and Engineering at Vestfold University College (Tønsberg, Norway), the MIcroSystems Engineering Centre (MISEC) at Heriot-Watt University and in collaboration with the Interventional Centre at Rikshospitalet University Hospital (Oslo, Norway). The accelerometers presented in this thesis were produced to be stitched to the surface of human hearts. In doing so they are used to measure the heart wall motion of patients that have just undergone heart bypass surgery. Results from studies carried out are presented and prove the concept of using such sensors for the detection of problems that can lead to the failure of heart bypasses. These studies were made possible using commercially available MEMS (MicroElectroMechanical Systems) three-axis accelerometers. However, the overall size of these sensors does not meet the requirements deemed necessary by the medical team (2(W) 2(H) 5(L) mm3) and fabrication activities were necessary to produce custom-made sensors. Design verification and performance modelling were carried out using Finite Element Analysis (FEA) and these results are presented alongside relevant analytical calculations. For fabrication, accelerometer designs were submitted to three foundry processes during the course of the work. The designs utilise the piezoresistive effect for the acceleration sensing and fabrication was carried out by bulk micromachining. Results of the characterisaton of the sensors are presente

    Human Health Engineering Volume II

    Get PDF
    In this Special Issue on “Human Health Engineering Volume II”, we invited submissions exploring recent contributions to the field of human health engineering, i.e., technology for monitoring the physical or mental health status of individuals in a variety of applications. Contributions could focus on sensors, wearable hardware, algorithms, or integrated monitoring systems. We organized the different papers according to their contributions to the main parts of the monitoring and control engineering scheme applied to human health applications, namely papers focusing on measuring/sensing physiological variables, papers highlighting health-monitoring applications, and examples of control and process management applications for human health. In comparison to biomedical engineering, we envision that the field of human health engineering will also cover applications for healthy humans (e.g., sports, sleep, and stress), and thus not only contribute to the development of technology for curing patients or supporting chronically ill people, but also to more general disease prevention and optimization of human well-being

    Proceedings of ICMMB2014

    Get PDF

    Bone Vibration Analysis as a Novel Screening Tool for Long Bone Fractures

    Get PDF
    The aim of this study is to reduce the number of X-ray scans taken to detect fractures, by developing a bone fracture screening system. When assessing a bone injury, doctors need to decide whether the injury has resulted in a fracture or a sprain so that they can provide appropriate treatments. The current way to differentiate between these is by an X-ray scan. In 2011, the 46,000 children attending Sheffield Children’s Hospital Emergency Department had 10,400 X-rays, mostly to help diagnose bone fractures. Roughly half the X-ray scans taken indicate that the injury is sprain. Unnecessary X-ray scan means raising costs and exposing patients to ionising radiation. Vibration analysis is a well-established technology for condition monitoring for defect detection in industries however; its use in the medical field is still evolving. In bone vibration analysis, periodic or aperiodic oscillations or oscillating signals are introduced, and subsequent responses are recorded followed by using mathematical methods to reach a conclusion. In this study, a computer-controlled mechanism induces a mild vibration and successive responses are recorded via a piezoelectric sensor. To demonstrate the method's feasibility, a preliminary study was carried out on five blocks of wood of different density, with the same dimensions. The tests indicated a significant reduction in the blocks' vibration frequency following their fracture. After obtaining National Health Services (NHS) Research Approval, appropriate number of bone vibration responses was recorded from adults’ wrists and children’s wrists and ankles who attended local hospitals following wrist or ankle injuries. Suitable signal processing and pattern recognition techniques were developed on the basis of vibration responses from bones at various stages to interpret the recorded signals. Data were acquired from healthy participants at a local school which were compared with the data acquired from hospital participants to verify the methods. Currently, this study differentiates around 80% of the injuries accurately. Additionally, both the data acquisition program and the device have been modified to improve the developed procedures. This study made some promising discoveries and the resulting techniques can be used for further explorations

    University catalog, 2016-2017

    Get PDF
    The catalog is a comprehensive reference for your academic studies. It includes a list of all degree programs offered at MU, including bachelors, masters, specialists, doctorates, minors, certificates, and emphasis areas. It details the university wide requirements, the curricular requirements for each program, and in some cases provides a sample plan of study. The catalog includes a complete listing and description of approved courses. It also provides information on academic policies, contact information for supporting offices, and a complete listing of faculty members. -- Page 3

    University catalog, 2015-2016

    Get PDF
    The catalog is a comprehensive reference for your academic studies. It includes a list of all degree programs offered at MU, including bachelors, masters, specialists, doctorates, minors, certificates, and emphasis areas. It details the university wide requirements, the curricular requirements for each program, and in some cases provides a sample plan of study. The catalog includes a complete listing and description of approved courses. It also provides information on academic policies, contact information for supporting offices, and a complete listing of faculty members. -- Page 4
    corecore