564 research outputs found

    The Use of Artificial Intelligence in the Management of Intracranial Aneurysms

    Get PDF
    The use of artificial intelligence (AI) has potential benefits in the management of intracranial aneurysms. Early detection of intracranial aneurysms is critical due to their high risk of complications such as rupture, vasospasm, and ischemia with highly impact on morbidity and mortality. The main findings suggest that AI can improve the accuracy of aneurysm detection, rupture risk prediction, and assist neurointervention in planning and performing procedures. This chapter discusses the potential for AI to improve patient care by enabling earlier diagnosis and timely treatment, reducing medical errors, costs, morbidity, and mortality. However, further validation of AI-based applications is necessary in a real-world clinical setting

    An attention residual u-net with differential preprocessing and geometric postprocessing: Learning how to segment vasculature including intracranial aneurysms

    Get PDF
    Objective Intracranial aneurysms (IA) are lethal, with high morbidity and mortality rates. Reliable, rapid, and accurate segmentation of IAs and their adjacent vasculature from medical imaging data is important to improve the clinical management of patients with IAs. However, due to the blurred boundaries and complex structure of IAs and overlapping with brain tissue or other cerebral arteries, image segmentation of IAs remains challenging. This study aimed to develop an attention residual U-Net (ARU-Net) architecture with differential preprocessing and geometric postprocessing for automatic segmentation of IAs and their adjacent arteries in conjunction with 3D rotational angiography (3DRA) images. Methods The proposed ARU-Net followed the classic U-Net framework with the following key enhancements. First, we preprocessed the 3DRA images based on boundary enhancement to capture more contour information and enhance the presence of small vessels. Second, we introduced the long skip connections of the attention gate at each layer of the fully convolutional decoder-encoder structure to emphasize the field of view (FOV) for IAs. Third, residual-based short skip connections were also embedded in each layer to implement in-depth supervision to help the network converge. Fourth, we devised a multiscale supervision strategy for independent prediction at different levels of the decoding path, integrating multiscale semantic information to facilitate the segmentation of small vessels. Fifth, the 3D conditional random field (3DCRF) and 3D connected component optimization (3DCCO) were exploited as postprocessing to optimize the segmentation results. Results Comprehensive experimental assessments validated the effectiveness of our ARU-Net. The proposed ARU-Net model achieved comparable or superior performance to the state-of-the-art methods through quantitative and qualitative evaluations. Notably, we found that ARU-Net improved the identification of arteries connecting to an IA, including small arteries that were hard to recognize by other methods. Consequently, IA geometries segmented by the proposed ARU-Net model yielded superior performance during subsequent computational hemodynamic studies (also known as patient-specific computational fluid dynamics [CFD] simulations). Furthermore, in an ablation study, the five key enhancements mentioned above were confirmed. Conclusions The proposed ARU-Net model can automatically segment the IAs in 3DRA images with relatively high accuracy and potentially has significant value for clinical computational hemodynamic analysis

    Using deep learning for an automatic detection and classification of the vascular bifurcations along the Circle of Willis

    Full text link
    Most of the intracranial aneurysms (ICA) occur on a specific portion of the cerebral vascular tree named the Circle of Willis (CoW). More particularly, they mainly arise onto fifteen of the major arterial bifurcations constituting this circular structure. Hence, for an efficient and timely diagnosis it is critical to develop some methods being able to accurately recognize each Bifurcation of Interest (BoI). Indeed, an automatic extraction of the bifurcations presenting the higher risk of developing an ICA would offer the neuroradiologists a quick glance at the most alarming areas. Due to the recent efforts on Artificial Intelligence, Deep Learning turned out to be the best performing technology for many pattern recognition tasks. Moreover, various methods have been particularly designed for medical image analysis purposes. This study intends to assist the neuroradiologists to promptly locate any bifurcation presenting a high risk of ICA occurrence. It can be seen as a Computer Aided Diagnosis scheme, where the Artificial Intelligence facilitates the access to the regions of interest within the MRI. In this work, we propose a method for a fully automatic detection and recognition of the bifurcations of interest forming the Circle of Willis. Several neural networks architectures have been tested, and we thoroughly evaluate the bifurcation recognition rate

    Virtual endovascular treatment of intracranial aneurysms: models and uncertainty

    Get PDF
    Virtual endovascular treatment models (VETMs) have been developed with the view to aid interventional neuroradiologists and neurosurgeons to pre-operatively analyze the comparative efficacy and safety of endovascular treatments for intracranial aneurysms. Based on the current state of VETMs in aneurysm rupture risk stratification and in patient-specific prediction of treatment outcomes, we argue there is a need to go beyond personalized biomechanical flow modeling assuming deterministic parameters and error-free measurements. The mechanobiological effects associated with blood clot formation are important factors in therapeutic decision making and models of post-treatment intra-aneurysmal biology and biochemistry should be linked to the purely hemodynamic models to improve the predictive power of current VETMs. The influence of model and parameter uncertainties associated to each component of a VETM is, where feasible, quantified via a random-effects meta-analysis of the literature. This allows estimating the pooled effect size of these uncertainties on aneurysmal wall shear stress. From such meta-analyses, two main sources of uncertainty emerge where research efforts have so far been limited: (1) vascular wall distensibility, and (2) intra/intersubject systemic flow variations. In the future, we suggest that current deterministic computational simulations need to be extended with strategies for uncertainty mitigation, uncertainty exploration, and sensitivity reduction techniques. WIREs Syst Biol Med 2017, 9:e1385. doi: 10.1002/wsbm.138

    Artificial Intelligence: Development and Applications in Neurosurgery

    Get PDF
    The last decade has witnessed a significant increase in the relevance of artificial intelligence (AI) in neuroscience. Gaining notoriety from its potential to revolutionize medical decision making, data analytics, and clinical workflows, AI is poised to be increasingly implemented into neurosurgical practice. However, certain considerations pose significant challenges to its immediate and widespread implementation. Hence, this chapter will explore current developments in AI as it pertains to the field of clinical neuroscience, with a primary focus on neurosurgery. Additionally included is a brief discussion of important economic and ethical considerations related to the feasibility and implementation of AI-based technologies in neurosciences, including future horizons such as the operational integrations of human and non-human capabilities

    Systems Radiology and Personalized Medicine

    Get PDF
    Medicine has evolved into a high level of specialization using the very detailed imaging of organs. This has impressively solved a multitude of acute health-related problems linked to single-organ diseases. Many diseases and pathophysiological processes, however, involve more than one organ. An organ-based approach is challenging when considering disease prevention and caring for elderly patients, or those with systemic chronic diseases or multiple co-morbidities. In addition, medical imaging provides more than a pretty picture. Much of the data are now revealed by quantitating algorithms with or without artificial intelligence. This Special Issue on “Systems Radiology and Personalized Medicine” includes reviews and original studies that show the strengths and weaknesses of structural and functional whole-body imaging for personalized medicine
    corecore