67 research outputs found

    Automatic detection, extraction and analysis of unrestrained gait using a wearable sensor system

    Get PDF
    Within this paper we demonstrate thee ffectiveness of a novel body-worn gait monitoring and analysis framework to both accurately and automatically assess gait during ’freeliving’ conditions. Key features of the system include the ability to automatically identify individual steps within specific gait conditions, and the implementation of continuous waveform analysis within an automated system for the generation of temporally normalized data and their statistical comparison across subjects

    Machine Learning Methods for Classifying Human Physical Activity from On-Body Accelerometers

    Get PDF
    The use of on-body wearable sensors is widespread in several academic and industrial domains. Of great interest are their applications in ambulatory monitoring and pervasive computing systems; here, some quantitative analysis of human motion and its automatic classification are the main computational tasks to be pursued. In this paper, we discuss how human physical activity can be classified using on-body accelerometers, with a major emphasis devoted to the computational algorithms employed for this purpose. In particular, we motivate our current interest for classifiers based on Hidden Markov Models (HMMs). An example is illustrated and discussed by analysing a dataset of accelerometer time series

    Gait Analysis Using Wearable Sensors

    Get PDF
    Gait analysis using wearable sensors is an inexpensive, convenient, and efficient manner of providing useful information for multiple health-related applications. As a clinical tool applied in the rehabilitation and diagnosis of medical conditions and sport activities, gait analysis using wearable sensors shows great prospects. The current paper reviews available wearable sensors and ambulatory gait analysis methods based on the various wearable sensors. After an introduction of the gait phases, the principles and features of wearable sensors used in gait analysis are provided. The gait analysis methods based on wearable sensors is divided into gait kinematics, gait kinetics, and electromyography. Studies on the current methods are reviewed, and applications in sports, rehabilitation, and clinical diagnosis are summarized separately. With the development of sensor technology and the analysis method, gait analysis using wearable sensors is expected to play an increasingly important role in clinical applications

    Deep learning and wearable sensors for the diagnosis and monitoring of Parkinson’s disease: A systematic review

    Get PDF
    Parkinson’s disease (PD) is a neurodegenerative disorder that produces both motor and non-motor complications, degrading the quality of life of PD patients. Over the past two decades, the use of wearable devices in combination with machine learning algorithms has provided promising methods for more objective and continuous monitoring of PD. Recent advances in artificial intelligence have provided new methods and algorithms for data analysis, such as deep learning (DL). The aim of this article is to provide a comprehensive review of current applications where DL algorithms are employed for the assessment of motor and nonmotor manifestations (NMM) using data collected via wearable sensors. This paper provides the reader with a summary of the current applications of DL and wearable devices for the diagnosis, prognosis, and monitoring of PD, in the hope of improving the adoption, applicability, and impact of both technologies as support tools. Following PRISMA (Systematic Reviews and Meta-Analyses) guidelines, sixty-nine studies were selected and analyzed. For each study, information on sample size, sensor configuration, DL approaches, validation methods, and results according to the specific symptom under study were extracted and summarized. Furthermore, quality assessment was conducted according to the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) method. The majority of studies (74%) were published within the last three years, demonstrating the increasing focus on wearable technology and DL approaches for PD assessment. However, most papers focused on monitoring (59%) and computer-assisted diagnosis (37%), while few papers attempted to predict treatment response. Motor symptoms (86%) were treated much more frequently than NMM (14%). Inertial sensors were the most commonly used technology, followed by force sensors and microphones. Finally, convolutional neural networks (52%) were preferred to other DL approaches, while extracted features (38%) and raw data (37%) were similarly used as input for DL models. The results of this review highlight several challenges related to the use of wearable technology and DL methods in the assessment of PD, despite the advantages this technology could bring in the development and implementation of automated systems for PD assessment

    Novel Technique for Gait Analysis Using Two Waist Mounted Gyroscopes

    Get PDF
    Analysis of the human gait is used in many applications such as medicine, sports, and person identification. Several research studies focused on the use of MEMS inertial sensors for gait analysis and showed promising results. The miniaturization of these sensors and their wearability allowed the analysis of gait on a long term outside of the laboratory environment which can reveal more information about the person and introduced the use of gait analysis in new applications such as indoor localization. Step detection and step length estimation are two basic and important gait analysis tasks. In fact, step detection is a prerequisite for the exploration of all other gait parameters. Researchers have proposed many methods for step detection, and their experiments results showed high accuracies that exceeded 99% in some cases. All of these methods rely on experimental thresholds selected based on a limited number of subjects and walking conditions. Selecting and verifying an optimal threshold is a difficult task since it can vary according to a lot of factors such as user, footwear, and the walking surface material. Also, most of these methods do not distinguish walking from other activities; they can only recognize motion state from idle state. Methods that can be used to distinguish walking from other activities are mainly machine learning methods that need training and complex data labeling. On the other hand, step length estimation methods used in the literature either need constant calibration for each user, rely on impractical sensor placement, or both. In this thesis, we employ the human walking bipedal nature for gait analysis using two MEMS gyroscopes, one attached to each side of the lower waist. This setup allowed the step detection and discrimination from other non bipedal activities without the need for magnitude thresholds or training. We were also able to calculate the hip rotation angle in the sagittal plane which allowed us to estimate the step length. without needing for constants calibration. By mounting an accelerometer on the center of the back of the waist, we were able to develop a method to auto-calibrate the Weinberg method constant, which is one of the most accurate step length estimation methods, and increase its accuracy even more

    Parkinson\u27s Symptoms quantification using wearable sensors

    Get PDF
    Parkinson’s disease (PD) is a common neurodegenerative disorder affecting more than one million people in the United States and seven million people worldwide. Motor symptoms such as tremor, slowness of movements, rigidity, postural instability, and gait impairment are commonly observed in PD patients. Currently, Parkinsonian symptoms are usually assessed in clinical settings, where a patient has to complete some predefined motor tasks. Then a physician assigns a score based on the United Parkinson’s Disease Rating Scale (UPDRS) after observing the motor task. However, this procedure suffers from inter subject variability. Also, patients tend to show fewer symptoms during clinical visit, which leads to false assumption of the disease severity. The objective of this study is to overcome this limitations by building a system using Inertial Measurement Unit (IMU) that can be used at clinics and in home to collect PD symptoms data and build algorithms that can quantify PD symptoms more effectively. Data was acquired from patients seen at movement disorders Clinic at Sanford Health in Fargo, ND. Subjects wore Physilog IMUs and performed tasks for tremor, bradykinesia and gait according to the protocol approved by Sanford IRB. The data was analyzed using modified algorithm that was initially developed using data from normal subjects emulating PD symptoms. For tremor measurement, the study showed that sensor signals collected from the index finger more accurately predict tremor severity compared to signals from a sensor placed on the wrist. For finger tapping, a task measuring bradykinesia, the algorithm could predict with more than 80% accuracy when a set of features were selected to train the prediction model. Regarding gait, three different analysis were done to find the effective parameters indicative of severity of PD. Gait speed measurement algorithm was first developed using treadmill as a reference. Then, it was shown that the features selected could predict PD gait with 85.5% accuracy

    Distributed Computing and Monitoring Technologies for Older Patients

    Get PDF
    This book summarizes various approaches for the automatic detection of health threats to older patients at home living alone. The text begins by briefly describing those who would most benefit from healthcare supervision. The book then summarizes possible scenarios for monitoring an older patient at home, deriving the common functional requirements for monitoring technology. Next, the work identifies the state of the art of technological monitoring approaches that are practically applicable to geriatric patients. A survey is presented on a range of such interdisciplinary fields as smart homes, telemonitoring, ambient intelligence, ambient assisted living, gerontechnology, and aging-in-place technology. The book discusses relevant experimental studies, highlighting the application of sensor fusion, signal processing and machine learning techniques. Finally, the text discusses future challenges, offering a number of suggestions for further research directions

    Wearable obstacle avoidance electronic travel aids for blind and visually impaired individuals : a systematic review

    Get PDF
    Background Wearable obstacle avoidance electronic travel aids (ETAs) have been developed to assist the safe displacement of blind and visually impaired individuals (BVIs) in indoor/outdoor spaces. This systematic review aimed to understand the strengths and weaknesses of existing ETAs in terms of hardware functionality, cost, and user experience. These elements may influence the usability of the ETAs and are valuable in guiding the development of superior ETAs in the future. Methods Formally published studies designing and developing the wearable obstacle avoidance ETAs were searched for from six databases from their inception to April 2023. The PRISMA 2020 and APISSER guidelines were followed. Results Eighty-nine studies were included for analysis, 41 of which were judged to be of moderate to high quality. Most wearable obstacle avoidance ETAs mainly depend on camera- and ultrasonic-based techniques to achieve perception of the environment. Acoustic feedback was the most common human-computer feedback form used by the ETAs. According to user experience, the efficacy and safety of the device was usually their primary concern. Conclusions Although many conceptualised ETAs have been designed to facilitate BVIs' independent navigation, most of these devices suffer from shortcomings. This is due to the nature and limitations of the various processors, environment detection techniques and human-computer feedback those ETAs are equipped with. Integrating multiple techniques and hardware into one ETA is a way to improve performance, but there is still a need to address the discomfort of wearing the device and the high-cost. Developing an applicable systematic review guideline along with a credible quality assessment tool for these types of studies is also required. © 2013 IEEE
    corecore