60 research outputs found

    Raster Time Series: Learning and Processing

    Get PDF
    As the amount of remote sensing data is increasing at a high rate, due to great improvements in sensor technology, efficient processing capabilities are of utmost importance. Remote sensing data from satellites is crucial in many scientific domains, like biodiversity and climate research. Because weather and climate are of particular interest for almost all living organisms on earth, the efficient classification of clouds is one of the most important problems. Geostationary satellites such as Meteosat Second Generation (MSG) offer the only possibility to generate long-term cloud data sets with high spatial and temporal resolution. This work, therefore, addresses research problems on efficient and parallel processing of MSG data to enable new applications and insights. First, we address the lack of a suitable processing chain to generate a long-term Fog and Low Stratus (FLS) time series. We present an efficient MSG data processing chain that processes multiple tasks simultaneously, and raster data in parallel using the Open Computing Language (OpenCL). The processing chain delivers a uniform FLS classification that combines day and night approaches in a single method. As a result, it is possible to calculate a year of FLS rasters quite easy. The second topic presents the application of Convolutional Neural Networks (CNN) for cloud classification. Conventional approaches to cloud detection often only classify single pixels and ignore the fact that clouds are highly dynamic and spatially continuous entities. Therefore, we propose a new method based on deep learning. Using a CNN image segmentation architecture, the presented Cloud Segmentation CNN (CS-CNN) classifies all pixels of a scene simultaneously. We show that CS-CNN is capable of processing multispectral satellite data to identify continuous phenomena such as highly dynamic clouds. The proposed approach provides excellent results on MSG satellite data in terms of quality, robustness, and runtime, in comparison to Random Forest (RF), another widely used machine learning method. Finally, we present the processing of raster time series with a system for Visualization, Transformation, and Analysis (VAT) of spatio-temporal data. It enables data-driven research with explorative workflows and uses time as an integral dimension. The combination of various raster and vector data time series enables new applications and insights. We present an application that combines weather information and aircraft trajectories to identify patterns in bad weather situations

    Empirical approach to satellite snow detection

    Get PDF
    LumipeitteellÀ on huomattava vaikutus sÀÀhÀn, ilmastoon, luontoon ja yhteiskuntaan. PelkÀstÀÀn sÀÀasemilla tehtÀvÀt lumihavainnot (lumen syvyys ja maanpinnan laatu) eivÀt anna kattavaa kuvaa lumen peittÀvyydestÀ tai muista lumipeitteen ominaisuuksista. SÀÀasemien tuottamia havaintoja voidaan tÀydentÀÀ satelliiteista tehtÀvillÀ havainnoilla. Geostationaariset sÀÀsatelliitit tuottavat havaintoja tihein vÀlein, mutta havaintoresoluutio on heikko monilla alueilla, joilla esiintyy kausittaista lunta. Polaariradoilla sÀÀsatelliittien havaintoresoluutio on napa-alueiden lÀheisyydessÀ huomattavasti parempi, mutta silloinkaan satelliitit eivÀt tuota jatkuvaa havaintopeittoa. TiheimmÀn havaintoresoluution tuottavat sÀÀsatelliittiradiometrit, jotka toimivat optisilla aallonpituuksilla (nÀkyvÀ valo ja infrapuna). Lumipeitteen kaukokartoitusta satelliiteista vaikeuttavat lumipeitteen oman vaihtelun lisÀksi pinnan ominaisuuksien vaihtelu (kasvillisuus, vesistöt, topografia) ja valaistusolojen vaihtelu. EpÀvarma ja osittain puutteellinen tieto pinnan ja kasvipeitteen ominaisuuksista vaikeuttaa luotettavan automaattisen analyyttisen lumentunnistusmenetelmÀn kehittÀmistÀ ja siksi empiirinen lÀhestymistapa saattaa olla toimivin vaihtoehto automaattista lumentunnistusmenetelmÀÀ kehitettÀessÀ. TÀssÀ työssÀ esitellÀÀn kaksi EUMETSATin osittain rahoittamassa H SAFissa kehitettyÀ lumituotetta ja niissÀ kÀytetyt empiiristÀ lÀhestymistapaa soveltaen kehitetyt algoritmit. Geostationaarinen MSG/SEVIRI H31 lumituote on saatavilla vuodesta 2008 alkaen ja polaarituote Metop/AVHRR H32 vuodesta 2015 alkaen. LisÀksi esitellÀÀn pintahavaintoihin perustuvat validointitulokset, jotka osoittavat tuotteiden saavuttavan mÀÀritellyt tavoitteet.Snow cover plays a significant role in the weather and climate system, ecosystems and many human activities, such as traffic. Weather station snow observations (snow depth and state of the ground) do not provide highresolution continental or global snow coverage data. The satellite observations complement in situ observations from weather stations. Geostationary weather satellites provide observations at high temporal resolution, but the spatial resolution is low, especially in polar regions. Polarorbiting weather satellites provide better spatial resolution in polar regions with limited temporal resolution. The best detection resolution is provided by optical and infra-red radiometers onboard weather satellites. Snow cover in itself is highly variable. Also, the variability of the surface properties (such as vegetation, water bodies, topography) and changing light conditions make satellite snow detection challenging. Much of this variability is in subpixel scales, and this uncertainty creates additional challenges for the development of snow detection methods. Thus, an empirical approach may be the most practical option when developing algorithms for automatic snow detection. In this work, which is a part of the EUMETSAT-funded H SAF project, two new empirically developed snow extent products for the EUMETSAT weather satellites are presented. The geostationary MSG/SEVIRI H32 snow product has been in operational production since 2008. The polar product Metop/AVHRR H32 is available since 2015. In addition, validation results based on weather station snow observations between 2015 and 2019 are presented. The results show that both products achieve the requirements set by the H SAF

    Data-driven model development in environmental geography - Methodological advancements and scientific applications

    Get PDF
    Die Erfassung rĂ€umlich kontinuierlicher Daten und raum-zeitlicher Dynamiken ist ein Forschungsschwerpunkt der Umweltgeographie. Zu diesem Ziel sind Modellierungsmethoden erforderlich, die es ermöglichen, aus limitierten Felddaten raum-zeitliche Aussagen abzuleiten. Die KomplexitĂ€t von Umweltsystemen erfordert dabei die Verwendung von Modellierungsstrategien, die es erlauben, beliebige ZusammenhĂ€nge zwischen einer Vielzahl potentieller PrĂ€diktoren zu berĂŒcksichtigen. Diese Anforderung verlangt nach einem Paradigmenwechsel von der parametrischen hin zu einer nicht-parametrischen, datengetriebenen Modellentwicklung, was zusĂ€tzlich durch die zunehmende VerfĂŒgbarkeit von Geodaten verstĂ€rkt wird. In diesem Zusammenhang haben sich maschinelle Lernverfahren als ein wichtiges Werkzeug erwiesen, um Muster in nicht-linearen und komplexen Systemen zu erfassen. Durch die wachsende PopularitĂ€t maschineller Lernverfahren in wissenschaftlichen Zeitschriften und die Entwicklung komfortabler Softwarepakete wird zunehmend der Fehleindruck einer einfachen Anwendbarkeit erzeugt. Dem gegenĂŒber steht jedoch eine KomplexitĂ€t, die im Detail nur durch eine umfassende Methodenkompetenz kontrolliert werden kann. Diese Problematik gilt insbesondere fĂŒr Geodaten, die besondere Merkmale wie vor allem rĂ€umliche AbhĂ€ngigkeit aufweisen, womit sie sich von "gewöhnlichen" Daten abheben, was jedoch in maschinellen Lernanwendungen bisher weitestgehend ignoriert wird. Die vorliegende Arbeit beschĂ€ftigt sich mit dem Potenzial und der SensitivitĂ€t des maschinellen Lernens in der Umweltgeographie. In diesem Zusammenhang wurde eine Reihe von maschinellen Lernanwendungen in einem breiten Spektrum der Umweltgeographie veröffentlicht. Die einzelnen BeitrĂ€ge stehen unter der ĂŒbergeordneten Hypothese, dass datengetriebene Modellierungsstrategien nur dann zu einem Informationsgewinn und zu robusten raum-zeitlichen Ergebnissen fĂŒhren, wenn die Merkmale von geographischen Daten berĂŒcksichtigt werden. Neben diesem ĂŒbergeordneten methodischen Fokus zielt jede Anwendung darauf ab, durch adĂ€quat angewandte Methoden neue fachliche Erkenntnisse in ihrem jeweiligen Forschungsgebiet zu liefern. Im Rahmen der Arbeit wurde eine Vielzahl relevanter Umweltmonitoring-Produkte entwickelt. Die Ergebnisse verdeutlichen, dass sowohl hohe fachwissenschaftliche als auch methodische Kenntnisse unverzichtbar sind, um den Bereich der datengetriebenen Umweltgeographie voranzutreiben. Die Arbeit demonstriert erstmals die Relevanz rĂ€umlicher Überfittung in geographischen Lernanwendungen und legt ihre Auswirkungen auf die Modellergebnisse dar. Um diesem Problem entgegenzuwirken, wird eine neue, an Geodaten angepasste Methode zur Modellentwicklung entwickelt, wodurch deutlich verbesserte Ergebnisse erzielt werden können. Diese Arbeit ist abschließend als Appell zu verstehen, ĂŒber die Standardanwendungen der maschinellen Lernverfahren hinauszudenken, da sie beweist, dass die Anwendung von Standardverfahren auf Geodaten zu starker Überfittung und Fehlinterpretation der Ergebnisse fĂŒhrt. Erst wenn Eigenschaften von geographischen Daten berĂŒcksichtigt werden, bietet das maschinelle Lernen ein leistungsstarkes Werkzeug, um wissenschaftlich verlĂ€ssliche Ergebnisse fĂŒr die Umweltgeographie zu liefern

    Towards global volcano monitoring using multisensor sentinel missions and artificial intelligence: The MOUNTS monitoring system

    Get PDF
    Most of the world’s 1500 active volcanoes are not instrumentally monitored, resulting in deadly eruptions which can occur without observation of precursory activity. The new Sentinel missions are now providing freely available imagery with unprecedented spatial and temporal resolutions, with payloads allowing for a comprehensive monitoring of volcanic hazards. We here present the volcano monitoring platform MOUNTS (Monitoring Unrest from Space), which aims for global monitoring, using multisensor satellite-based imagery (Sentinel-1 Synthetic Aperture Radar SAR, Sentinel-2 Short-Wave InfraRed SWIR, Sentinel-5P TROPOMI), ground-based seismic data (GEOFON and USGS global earthquake catalogues), and artificial intelligence (AI) to assist monitoring tasks. It provides near-real-time access to surface deformation, heat anomalies, SO2 gas emissions, and local seismicity at a number of volcanoes around the globe, providing support to both scientific and operational communities for volcanic risk assessment. Results are visualized on an open-access website where both geocoded images and time series of relevant parameters are provided, allowing for a comprehensive understanding of the temporal evolution of volcanic activity and eruptive products. We further demonstrate that AI can play a key role in such monitoring frameworks. Here we design and train a Convolutional Neural Network (CNN) on synthetically generated interferograms, to operationally detect strong deformation (e.g., related to dyke intrusions), in the real interferograms produced by MOUNTS. The utility of this interdisciplinary approach is illustrated through a number of recent eruptions (Erta Ale 2017, Fuego 2018, Kilauea 2018, Anak Krakatau 2018, Ambrym 2018, and Piton de la Fournaise 2018–2019). We show how exploiting multiple sensors allows for assessment of a variety of volcanic processes in various climatic settings, ranging from subsurface magma intrusion, to surface eruptive deposit emplacement, pre/syn-eruptive morphological changes, and gas propagation into the atmosphere. The data processed by MOUNTS is providing insights into eruptive precursors and eruptive dynamics of these volcanoes, and is sharpening our understanding of how the integration of multiparametric datasets can help better monitor volcanic hazards

    The September 2019 floods in Spain: An example of the utility of satellite data for the analysis of extreme hydrometeorological events

    Get PDF
    Major floods in Spain in September 9–13, 2019 resulted in seven casualties and massive losses to agriculture, property and infrastructure. This paper investigates the utility of satellite data to: (1) characterize the event when input into a hydrological model, and to provide an accurate picture of the evolution of the floods; and (2) inform meteorologists in real time in order to complement model forecasts. It is shown that the precipitation estimates from the Global Precipitation Measurement (GPM) Core Observatory (GPM-CO, available since 2014) and the merged satellite estimates provide an extraordinary improvement over previous technologies to monitor severe hydrometeorological episodes in near real time. In spite of known biases and errors, these new satellite precipitation estimates can be of broad practical interest to deal with emergencies and long-term readiness, especially for semi-arid areas potentially affected by ongoing global warming. Comparisons of satellite data of the September event with model outputs and more direct observations such as rain gauges and ground radars reinforce the idea that satellites are fundamental for an appropriate management of hydrometeorological events.Funding from projects PID2019-108470RB-C21, PID2019-108470RB-C22 (AEI/FEDER, UE), CGL2016-80609-R, and 1365002970/KMA2018-00721 (Korean Meteorological Agency, Korea) is gratefully acknowledged

    Development of Energy-efficient Algorithms for Wireless Sensor Networks

    Get PDF

    Innovative Techniques for the Retrieval of Earth’s Surface and Atmosphere Geophysical Parameters: Spaceborne Infrared/Microwave Combined Analyses

    Get PDF
    With the advent of the first satellites for Earth Observation: Landsat-1 in July 1972 and ERS-1 in May 1991, the discipline of environmental remote sensing has become, over time, increasingly fundamental for the study of phenomena characterizing the planet Earth. The goal of environmental remote sensing is to perform detailed analyses and to monitor the temporal evolution of different physical phenomena, exploiting the mechanisms of interaction between the objects that are present in an observed scene and the electromagnetic radiation detected by sensors, placed at a distance from the scene, operating at different frequencies. The analyzed physical phenomena are those related to climate change, weather forecasts, global ocean circulation, greenhouse gas profiling, earthquakes, volcanic eruptions, soil subsidence, and the effects of rapid urbanization processes. Generally, remote sensing sensors are of two primary types: active and passive. Active sensors use their own source of electromagnetic radiation to illuminate and analyze an area of interest. An active sensor emits radiation in the direction of the area to be investigated and then detects and measures the radiation that is backscattered from the objects contained in that area. Passive sensors, on the other hand, detect natural electromagnetic radiation (e.g., from the Sun in the visible band and the Earth in the infrared and microwave bands) emitted or reflected by the object contained in the observed scene. The scientific community has dedicated many resources to developing techniques to estimate, study and analyze Earth’s geophysical parameters. These techniques differ for active and passive sensors because they depend strictly on the type of the measured physical quantity. In my P.h.D. work, inversion techniques for estimating Earth’s surface and atmosphere geophysical parameters will be addressed, emphasizing methods based on machine learning (ML). In particular, the study of cloud microphysics and the characterization of Earth’s surface changes phenomenon are the critical points of this work
    • 

    corecore