160 research outputs found

    Magnetic Resonance Image segmentation using Pulse Coupled Neural Networks

    Get PDF
    The Pulse Couple Neural Network (PCNN) was developed by Eckhorn to model the observed synchronization of neural assemblies in the visual cortex of small mammals such as a cat. In this dissertation, three novel PCNN based automatic segmentation algorithms were developed to segment Magnetic Resonance Imaging (MRI) data: (a) PCNN image \u27signature\u27 based single region cropping; (b) PCNN - Kittler Illingworth minimum error thresholding and (c) PCNN -Gaussian Mixture Model - Expectation Maximization (GMM-EM) based multiple material segmentation. Among other control tests, the proposed algorithms were tested on three T2 weighted acquisition configurations comprising a total of 42 rat brain volumes, 20 T1 weighted MR human brain volumes from Harvard\u27s Internet Brain Segmentation Repository and 5 human MR breast volumes. The results were compared against manually segmented gold standards, Brain Extraction Tool (BET) V2.1 results, published results and single threshold methods. The Jaccard similarity index was used for numerical evaluation of the proposed algorithms. Our quantitative results demonstrate conclusively that PCNN based multiple material segmentation strategies can approach a human eye\u27s intensity delineation capability in grayscale image segmentation tasks

    Automatic Affine and Elastic Registration Strategies for Multi-dimensional Medical Images

    Get PDF
    Medical images have been used increasingly for diagnosis, treatment planning, monitoring disease processes, and other medical applications. A large variety of medical imaging modalities exists including CT, X-ray, MRI, Ultrasound, etc. Frequently a group of images need to be compared to one another and/or combined for research or cumulative purposes. In many medical studies, multiple images are acquired from subjects at different times or with different imaging modalities. Misalignment inevitably occurs, causing anatomical and/or functional feature shifts within the images. Computerized image registration (alignment) approaches can offer automatic and accurate image alignments without extensive user involvement and provide tools for visualizing combined images. This dissertation focuses on providing automatic image registration strategies. After a through review of existing image registration techniques, we identified two registration strategies that enhance the current field: (1) an automated rigid body and affine registration using voxel similarity measurements based on a sequential hybrid genetic algorithm, and (2) an automated deformable registration approach based upon a linear elastic finite element formulation. Both methods streamlined the registration process. They are completely automatic and require no user intervention. The proposed registration strategies were evaluated with numerous 2D and 3D MR images with a variety of tissue structures, orientations and dimensions. Multiple registration pathways were provided with guidelines for their applications. The sequential genetic algorithm mimics the pathway of an expert manually doing registration. Experiments demonstrated that the sequential genetic algorithm registration provides high alignment accuracy and is reliable for brain tissues. It avoids local minima/maxima traps of conventional optimization techniques, and does not require any preprocessing such as threshold, smoothing, segmentation, or definition of base points or edges. The elastic model was shown to be highly effective to accurately align areas of interest that are automatically extracted from the images, such as brains. Using a finite element method to get the displacement of each element node by applying a boundary mapping, this method provides an accurate image registration with excellent boundary alignment of each pair of slices and consequently align the entire volume automatically. This dissertation presented numerous volume alignments. Surface geometries were created directly from the aligned segmented images using the Multiple Material Marching Cubes algorithm. Using the proposed registration strategies, multiple subjects were aligned to a standard MRI reference, which is aligned to a segmented reference atlas. Consequently, multiple subjects are aligned to the segmented atlas and a full fMRI analysis is possible

    Towards an efficient segmentation of small rodents brain: a short critical review

    Get PDF
    One of the most common tasks in small rodents MRI pipelines is the voxel-wise segmentation of the volume in multiple classes. While many segmentation schemes have been developed for the human brain, fewer are available for rodent MRI, often by adaptation from human neuroimaging. Common methods include atlas-based and clustering schemes. The former labels the target volume by registering one or more pre-labeled atlases using a deformable registration method, in which case the result depends on the quality of the reference volumes, the registration algorithm and the label fusion approach, if more than one atlas is employed. The latter is based on an expectation maximization procedure to maximize the variance between voxel categories, and is often combined with Markov Random Fields and the atlas based approach to include spatial information, priors, and improve the classification accuracy. Our primary goal is to critically review the state of the art of rat and mouse segmentation of neuro MRI volumes and compare the available literature on popular, readily and freely available MRI toolsets, including SPM, FSL and ANTs, when applied to this task in the context of common pre-processing steps. Furthermore, we will briefly address the emerging Deep Learning methods for the segmentation of medical imaging, and the perspectives for applications to small rodents

    Automatic cerebral hemisphere segmentation in rat MRI with lesions via attention-based convolutional neural networks

    Full text link
    We present MedicDeepLabv3+, a convolutional neural network that is the first completely automatic method to segment cerebral hemispheres in magnetic resonance (MR) volumes of rats with lesions. MedicDeepLabv3+ improves the state-of-the-art DeepLabv3+ with an advanced decoder, incorporating spatial attention layers and additional skip connections that, as we show in our experiments, lead to more precise segmentations. MedicDeepLabv3+ requires no MR image preprocessing, such as bias-field correction or registration to a template, produces segmentations in less than a second, and its GPU memory requirements can be adjusted based on the available resources. We optimized MedicDeepLabv3+ and six other state-of-the-art convolutional neural networks (DeepLabv3+, UNet, HighRes3DNet, V-Net, VoxResNet, Demon) on a heterogeneous training set comprised by MR volumes from 11 cohorts acquired at different lesion stages. Then, we evaluated the trained models and two approaches specifically designed for rodent MRI skull stripping (RATS and RBET) on a large dataset of 655 MR rat brain volumes. In our experiments, MedicDeepLabv3+ outperformed the other methods, yielding an average Dice coefficient of 0.952 and 0.944 in the brain and contralateral hemisphere regions. Additionally, we show that despite limiting the GPU memory and the training data, our MedicDeepLabv3+ also provided satisfactory segmentations. In conclusion, our method, publicly available at https://github.com/jmlipman/MedicDeepLabv3Plus, yielded excellent results in multiple scenarios, demonstrating its capability to reduce human workload in rat neuroimaging studies.Comment: Published in NeuroInformatic

    Convolutional neural networks for the segmentation of small rodent brain MRI

    Get PDF
    Image segmentation is a common step in the analysis of preclinical brain MRI, often performed manually. This is a time-consuming procedure subject to inter- and intra- rater variability. A possible alternative is the use of automated, registration-based segmentation, which suffers from a bias owed to the limited capacity of registration to adapt to pathological conditions such as Traumatic Brain Injury (TBI). In this work a novel method is developed for the segmentation of small rodent brain MRI based on Convolutional Neural Networks (CNNs). The experiments here presented show how CNNs provide a fast, robust and accurate alternative to both manual and registration-based methods. This is demonstrated by accurately segmenting three large datasets of MRI scans of healthy and Huntington disease model mice, as well as TBI rats. MU-Net and MU-Net-R, the CCNs here presented, achieve human-level accuracy while eliminating intra-rater variability, alleviating the biases of registration-based segmentation, and with an inference time of less than one second per scan. Using these segmentation masks I designed a geometric construction to extract 39 parameters describing the position and orientation of the hippocampus, and later used them to classify epileptic vs. non-epileptic rats with a balanced accuracy of 0.80, five months after TBI. This clinically transferable geometric approach detects subjects at high-risk of post-traumatic epilepsy, paving the way towards subject stratification for antiepileptogenesis studies

    Semi-Automatic Registration Utility for MR Brain Imaging of Small Animals

    Get PDF
    The advancements in medical technologies have allowed more accurate diagnosis and quantitative assessments. Magnetic Resonance Imaging is one of the most effective and critical technologies in modern diagnosis. However, preprocessing tasks are required to perform various research topics basing on MR image. Registration is one of the those preprocessing tasks. In this research, a semi-automatic utility was developed for doing MRI registration of small animals. It focuses on 2D rigid body registration. The test results show that this developed utility can perform registration well for MRI of small animals in both intra-subject and inter-subjects

    Automated joint skull-stripping and segmentation with Multi-Task U-Net in large mouse brain MRI databases

    Get PDF
    Skull-stripping and region segmentation are fundamental steps in preclinical magnetic resonance imaging (MRI) studies, and these common procedures are usually performed manually. We present Multi-task U-Net (MU-Net), a convolutional neural network designed to accomplish both tasks simultaneously. MU-Net achieved higher segmentation accuracy than state-of-the-art multi-atlas segmentation methods with an inference time of 0.35 s and no pre-processing requirements. We trained and validated MU-Net on 128 T2-weighted mouse MRI volumes as well as on the publicly available MRM NeAT dataset of 10 MRI volumes. We tested MU-Net with an unusually large dataset combining several independent studies consisting of 1782 mouse brain MRI volumes of both healthy and Huntington animals, and measured average Dice scores of 0.906 (striati), 0.937 (cortex), and 0.978 (brain mask). Further, we explored the effectiveness of our network in the presence of different architectural features, including skip connections and recently proposed framing connections, and the effects of the age range of the training set animals. These high evaluation scores demonstrate that MU-Net is a powerful tool for segmentation and skull-stripping, decreasing inter and intra-rater variability of manual segmentation. The MU-Net code and the trained model are publicly available at https://github.com/Hierakonpolis/MU-Net

    Development of imaging methods for the lithium-pilocarpine model of epilepsy

    Get PDF
    Anti-inflammatory therapies are promising candidates for the prevention of brain injury following prolonged seizures (status epilepticus). Biomarkers for therapy monitoring are needed to translate these recent findings to the clinic. The aim of this thesis was to develop imaging methods that can be used to monitor anti-inflammatory therapies and monitor disease progression following prolonged seizures. In order to achieve these goals, the lithium-pilocarpine model was used as a model of status epilepticus and novel MRI imaging methods were employed. Various imaging approaches including: quantitative, structural, molecular and functional imaging were tested for their possible investigative utility as imaging biomarkers for neuroprotective therapies. Alongside this, two different anti-inflammatory therapies were tested for their effectiveness to alter brain injury following status epilepticus. This thesis demonstrates that molecular imaging has potential to monitor neuroprotective therapies. Surprisingly, there was little evidence that the anti-inflammatory therapies tested here had beneficial effects. However, this thesis shows that employing novel imaging approaches and automated analysis methods can enable accurate in vivo assessment of disease altering therapies

    A Statistical Parametric Mapping Toolbox Used for Voxel-Wise Analysis of FDG-PET Images of Rat Brain

    Get PDF
    abstract: Purpose PET (positron emission tomography) imaging researches of functional metabolism using fluorodeoxyglucose ([superscript 18]F-FDG) of animal brain are important in neuroscience studies. FDG-PET imaging studies are often performed on groups of rats, so it is desirable to establish an objective voxel-based statistical methodology for group data analysis. Material and Methods This study establishes a statistical parametric mapping (SPM) toolbox (plug-ins) named spmratIHEP for voxel-wise analysis of FDG-PET images of rat brain, in which an FDG-PET template and an intracranial mask image of rat brain in Paxinos & Watson space were constructed, and the default settings were modified according to features of rat brain. Compared to previous studies, our constructed rat brain template comprises not only the cerebrum and cerebellum, but also the whole olfactory bulb which made the later cognitive studies much more exhaustive. And with an intracranial mask image in the template space, the brain tissues of individuals could be extracted automatically. Moreover, an atlas space is used for anatomically labeling the functional findings in the Paxinos & Watson space. In order to standardize the template image with the atlas accurately, a synthetic FDG-PET image with six main anatomy structures is constructed from the atlas, which performs as a target image in the co-registration. Results The spatial normalization procedure is evaluated, by which the individual rat brain images could be standardized into the Paxinos & Watson space successfully and the intracranial tissues could also be extracted accurately. The practical usability of this toolbox is evaluated using FDG-PET functional images from rats with left side middle cerebral artery occlusion (MCAO) in comparison to normal control rats. And the two-sample t-test statistical result is almost related to the left side MCA. Conclusion We established a toolbox of SPM8 named spmratIHEP for voxel-wise analysis of FDG-PET images of rat brain.The article is published at http://journals.plos.org/plosone/article?id=10.1371/journal.pone.010829

    Automatic Pancreas Segmentation and 3D Reconstruction for Morphological Feature Extraction in Medical Image Analysis

    Get PDF
    The development of highly accurate, quantitative automatic medical image segmentation techniques, in comparison to manual techniques, remains a constant challenge for medical image analysis. In particular, segmenting the pancreas from an abdominal scan presents additional difficulties: this particular organ has very high anatomical variability, and a full inspection is problematic due to the location of the pancreas behind the stomach. Therefore, accurate, automatic pancreas segmentation can consequently yield quantitative morphological measures such as volume and curvature, supporting biomedical research to establish the severity and progression of a condition, such as type 2 diabetes mellitus. Furthermore, it can also guide subject stratification after diagnosis or before clinical trials, and help shed additional light on detecting early signs of pancreatic cancer. This PhD thesis delivers a novel approach for automatic, accurate quantitative pancreas segmentation in mostly but not exclusively Magnetic Resonance Imaging (MRI), by harnessing the advantages of machine learning and classical image processing in computer vision. The proposed approach is evaluated on two MRI datasets containing 216 and 132 image volumes, achieving a mean Dice similarity coefficient (DSC) of 84:1 4:6% and 85:7 2:3% respectively. In order to demonstrate the universality of the approach, a dataset containing 82 Computer Tomography (CT) image volumes is also evaluated and achieves mean DSC of 83:1 5:3%. The proposed approach delivers a contribution to computer science (computer vision) in medical image analysis, reporting better quantitative pancreas segmentation results in comparison to other state-of-the-art techniques, and also captures detailed pancreas boundaries as verified by two independent experts in radiology and radiography. The contributions’ impact can support the usage of computational methods in biomedical research with a clinical translation; for example, the pancreas volume provides a prognostic biomarker about the severity of type 2 diabetes mellitus. Furthermore, a generalisation of the proposed segmentation approach successfully extends to other anatomical structures, including the kidneys, liver and iliopsoas muscles using different MRI sequences. Thus, the proposed approach can incorporate into the development of a computational tool to support radiological interpretations of MRI scans obtained using different sequences by providing a “second opinion”, help reduce possible misdiagnosis, and consequently, provide enhanced guidance towards targeted treatment planning
    • …
    corecore