33 research outputs found

    Automatic Counting of Tilings of Skinny Plane Regions

    Full text link
    The deductive method ruled mathematics for the last 2500 years, now it is the turn of the inductive method. Here we make a modest start by using the inductive method to discover and prove (rigorously) explicit generating functions for the number of dimer (and monomer-dimer) tilings of large families of "skinny" plane regions.Comment: 10 pages. Accompanied by three Maple packages and many output files that may be viewed and downloaded from <A HREF="http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/ritsuf.html">thus url</A

    VoroCrust: Voronoi Meshing Without Clipping

    Full text link
    Polyhedral meshes are increasingly becoming an attractive option with particular advantages over traditional meshes for certain applications. What has been missing is a robust polyhedral meshing algorithm that can handle broad classes of domains exhibiting arbitrarily curved boundaries and sharp features. In addition, the power of primal-dual mesh pairs, exemplified by Voronoi-Delaunay meshes, has been recognized as an important ingredient in numerous formulations. The VoroCrust algorithm is the first provably-correct algorithm for conforming polyhedral Voronoi meshing for non-convex and non-manifold domains with guarantees on the quality of both surface and volume elements. A robust refinement process estimates a suitable sizing field that enables the careful placement of Voronoi seeds across the surface circumventing the need for clipping and avoiding its many drawbacks. The algorithm has the flexibility of filling the interior by either structured or random samples, while preserving all sharp features in the output mesh. We demonstrate the capabilities of the algorithm on a variety of models and compare against state-of-the-art polyhedral meshing methods based on clipped Voronoi cells establishing the clear advantage of VoroCrust output.Comment: 18 pages (including appendix), 18 figures. Version without compressed images available on https://www.dropbox.com/s/qc6sot1gaujundy/VoroCrust.pdf. Supplemental materials available on https://www.dropbox.com/s/6p72h1e2ivw6kj3/VoroCrust_supplemental_materials.pd

    Analytic Combinatorics in Several Variables: Effective Asymptotics and Lattice Path Enumeration

    Get PDF
    The field of analytic combinatorics, which studies the asymptotic behaviour of sequences through analytic properties of their generating functions, has led to the development of deep and powerful tools with applications across mathematics and the natural sciences. In addition to the now classical univariate theory, recent work in the study of analytic combinatorics in several variables (ACSV) has shown how to derive asymptotics for the coefficients of certain D-finite functions represented by diagonals of multivariate rational functions. We give a pedagogical introduction to the methods of ACSV from a computer algebra viewpoint, developing rigorous algorithms and giving the first complexity results in this area under conditions which are broadly satisfied. Furthermore, we give several new applications of ACSV to the enumeration of lattice walks restricted to certain regions. In addition to proving several open conjectures on the asymptotics of such walks, a detailed study of lattice walk models with weighted steps is undertaken.Comment: PhD thesis, University of Waterloo and ENS Lyon - 259 page

    Analytic combinatorics : functional equations, rational and algebraic functions

    Get PDF
    This report is part of a series whose aim is to present in a synthetic way the major methods and models in analytic combinatorics. Here, we detail the case of rational and algebraic functions and discuss systematically closure properties, the location of singularities, and consequences regarding combinatorial enumeration. The theory is applied to regular and context-free languages, finite state models, paths in graphs, locally constrained permutati- ons, lattice paths and walks, trees, and planar maps

    Large bichromatic point sets admit empty monochromatic 4-gons

    No full text
    We consider a variation of a problem stated by Erd˝os and Szekeres in 1935 about the existence of a number fES(k) such that any set S of at least fES(k) points in general position in the plane has a subset of k points that are the vertices of a convex k-gon. In our setting the points of S are colored, and we say that a (not necessarily convex) spanned polygon is monochromatic if all its vertices have the same color. Moreover, a polygon is called empty if it does not contain any points of S in its interior. We show that any bichromatic set of n ≥ 5044 points in R2 in general position determines at least one empty, monochromatic quadrilateral (and thus linearly many).Postprint (published version

    Mythic Circle #23

    Get PDF

    Southern Accent January 2001 - May 2001

    Get PDF
    Southern Adventist University\u27s newspaper, Southern Accent, for the academic year of 2001.https://knowledge.e.southern.edu/southern_accent/1078/thumbnail.jp

    Southern Accent August 2002 - May 2003

    Get PDF
    Southern Adventist University\u27s newspaper, Southern Accent, for the academic year of 2002-2003.https://knowledge.e.southern.edu/southern_accent/1080/thumbnail.jp

    Winona Daily News

    Get PDF
    https://openriver.winona.edu/winonadailynews/1730/thumbnail.jp
    corecore